Skip to main content
Log in

Finite element model based test and analysis on ACHC short columns and hoop coefficient

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In order to promote the application of angle-steel confined high-strength concrete (ACHC) columns in new construction and reinforcement projects of civil engineering, this paper designs 15 groups of ACHC short columns with a shear span ratio of 1.5 under axial compression by taking the hoop coefficient, strength grade of concrete and yield strength of steel as parameters. Based on the constitutive model of steel and confined concrete and considering hoop effect, the simulation analysis on them was carried out by ANSYS software, and the rationality of finite element modelling is verified by comparing it with the experimental data. The author investigated the influence of different hoop coefficients, different concrete strength grades and different yield strength of steel to the mechanic behaviour of ACHC short columns, and the results show that the influence of hoop coefficient to the bearing capacity and ductility is more significantly than other parameters. Considering the hoop effect of batten plate to concrete, the linear relationship between the influence factor of batten plates and the hoop coefficient is inverted by using 1stopt software. At last, the calculation formula of ultimate bearing capacity of ACHC short columns is gotten, and the design method and suggestion of short columns are put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(f_{cc}\) :

Compressive strength of confined high-strength concrete

\(f_{co}\) :

Compressive strength of non-restraint high-strength concrete

\(\varepsilon _{cc }\) :

Peak strains of constraint high-strength concrete

\(\varepsilon _{co }\) :

Peak strains of non-restraint high-strength concrete

\(f_{c}\) :

Current stress of the high-strength concrete

\(\varepsilon _{c}\) :

Strain of the high-strength concrete

\(E_{c}\) :

Elastic modulus of concrete

\(E_{sec}\) :

Secant modulus of confined concrete’s peak strain point

\(f_{r}\) :

Constraint stress of transverse steel plate

\(k_{e }\) :

Effective confinement factor

\(A_{e}\) :

Effective constraint area of steel plate to core high-strength concrete

\(A_{cc}\) :

Core concrete area surrounded by steel plate section centroid after deducting the longitudinal angle-steel area

\(A_{c}\) :

Core concrete area surrounded by steel plate section centroid

\(\rho _{cc}\) :

Ratio of vertical steel plate’s area and the area of core concrete surrounded by section steel plate’s centroid

\(w_i^{\prime } \) :

Clear distance of the two adjoining longitudinal angle-steels

\({s}'\) :

Clear space between two battens

\(b_{c}\) :

Centroid distance of external two ring steel plates along x directions

\(d_{c}\) :

Centroid distance of external two ring steel plates along y directions

\(f_{r }\) :

Transverse plate’s constraint stress

\(f_r^{\prime } \) :

Effective restraint stress

\(A_{s}\) :

Section area of angle steels

\(f_{y }\) :

Yield strength of angle steels

\(\alpha _{s}\) :

Effect coefficient of batten plates spacing

\(\lambda _{t }\) :

Hoop coefficient

References

  1. Zheng, W.Z., Ji, J.: Dynamic performance of angle-steel concrete columns under low cyclic loading-I: experimental study. Earthq. Eng. Eng. Vib. 7(1), 67–75 (2008). doi:10.1007/s11803-008-0768-0

    Article  Google Scholar 

  2. Zheng, W.Z., Ji, J.: Dynamic performance of angle-steel concrete columns under low cyclic loading-II: parametric study. Earthq. Eng. Eng. Vib. 7(2), 137–146 (2008). doi:10.1007/s11803-008-0793-z

    Article  Google Scholar 

  3. Zheng, W.Z., Zhang, H.Y.: Time-history analysis & anti-collapse construction of storey-adding out-jacketing frame cooperated with the existing structure. J. Harbin Inst. Technol. 43(4), 6–11 (2011). doi:10.11918/j.issn.0367-6234.2011.04.002

    Article  Google Scholar 

  4. Ji, J., Zheng, W.Z., Wang, K.: Application of three types of outer-jacketing structures for adding story around the existing building. J. Harbin Inst. Technol. 40(2), 192–195+263 (2008). doi:10.3321/j.issn:0367-6234.2008.02.006

  5. Sheikh, S.A., Usumeri, S.M.: Strength and ductility of tied concrete columns. J. Struct. Div. 106(5), 1079–1102 (1980)

    Google Scholar 

  6. Rosario, M., Vincenzo, P.: Reinforced concrete columns strengthened with angles and battens subjected to eccentric load. Eng. Struct. 31(2), 539–550 (2009). doi:10.1016/j.engstruct.2008.10.005

    Article  Google Scholar 

  7. Ren, F.D., Liang, S.X., Tian, J.H.: Test study on reinforcement method of reinforced concrete frame column with angle-steel. Constr. Struct. 11(3), 46–51 (1983). doi:10.14006/j.jzjgxb.1986.01.002

    Article  Google Scholar 

  8. Jiang, S.F., Liu, Z.Y., Lin, Q.H.: Performance analysis and study of short columns with external angel steel. J. Northeast Univ. (Nat. Sci.) 18(1), 26–30 (1997)

  9. Lu, H.W.: Test and finite element analysis on angle-steel confined concrete short column under axial compression. The master Dissertation of Northeast Petroleum University, Daqing, China (2009)

  10. Dong, B.Y.: Study on shake table test of damaged single-span frame structure strengthened by steel braces and angle steel. The Master Dissertation of Institute of Engineering Mechanics, China Earthquake Administration, Harbin, China (2014)

  11. Nie, J.G., Hu, H.S.: Experimental research on concrete filled steel plate composite coupling beams (I): seismic behavior. J. Build. Struct. 35(5), 1–9 (2014). doi:10.14006/j.jzjgxb.2014.05.005

    Article  Google Scholar 

  12. Zhao, G.T., Wang, L.N., Wang, S.M.: Experimental study on seismic behavior of partially encased concrete column-steel beam frame connected with top and seat angles. Prog. Steel Build. Struct. 19(3), 19–24 (2017). doi:10.13969/j.cnki.cn31-1893.2017.03.003

    Article  MathSciNet  Google Scholar 

  13. Wang, Y.Q., Zhang, N., Ding, D.Y., Yang, Y.H., Peng, X.G.: Steel-concrete composite reinforcement method and the engineering application of steel frame structure. Sichuan Build. Sci. 43(1), 34–38 (2017). doi:10.3969/j.issn.1008-1933.2017.01.007

    Article  Google Scholar 

  14. Hao, W.H.: ANSYS Application Case of Civil Engineering, pp. 46–54. China Water Conservancy and Hydropower Press, Beijing (2005)

  15. Shang, X.J., Qiu, F., Zhao, H.F.: The Senior Analysis Method of Structure Finite Element in ANSYS and Example Applications, pp. 111–116. China Water Conservancy and Hydropower Press, Beijing (2008)

  16. Deng, J., Lee, M.M.K., Li, S.Q.: Flexural strength of steel-concrete composite beams reinforces with a prestressed CFRP plate. Constr. Build. Mater. 25(1), 379–384 (2011). doi:10.1016/j.conbuildmat.2010.06.015

    Article  Google Scholar 

  17. Deng, J., Lee, M.M.K.: Behavior under static loading of metallic beams reinforced with a bonded CFRP plate. Compos. Struct. 78(2), 232–242 (2007). doi:10.1016/j.compstruct.2005.09.004

    Article  Google Scholar 

  18. Meng, G., Zhang, L.H., Jia, J.Q.: Experimental study on flexural behavior of prestressed steel reinforced ultra-high strength concrete beams. Eng. Mech. 9(4), 534–536 (2013)

    Google Scholar 

  19. Ji, J., Xing, F., Wu, Y.J., et al.: Hysteretic behavior analysis and design on cross-type rigid joints of steel frame. J. Northeast Pet. Univ. 38(1), 102–111 (2014). doi:10.3969/j.issn.2095-4107.2014.01.016

    Article  Google Scholar 

  20. Ji, J., Li, B., Dai, J.G., et al.: The hysteretic behavior analysis and design of the single-span and double-layer steel frame based on the outer-jacketing storey-adding. J. Northeast Pet. Univ. 38(5), 111–120 (2014). doi:10.3969/j.issn.2095-4107.2014.05.014

    Article  Google Scholar 

  21. Zhang, W.F., Zhao, W.Y., Li, W., et al.: Calculation of on flexural stiffness of concrete-filled steel tube and its affecting factors. J. Daqing Pet. Inst. 25(2), 98–99 (2001). doi:10.3969/j.issn.2095-4107.2001.02.032

    Article  Google Scholar 

  22. Zhang, W.F., Hao, J.F., Xue, J.H., et al.: Constitutive model of concrete filled circular steel tube brace members under cyclic load. J. Daqing Pet. Inst. 34(3), 104–108 (2010). doi:10.3969/j.issn.2095-4107.2010.03.024

    Article  Google Scholar 

  23. Mander, J.B., Priestley, M.J.N., Park, R.: Theoretical stress-strain mode for confined concrete. J. Struct. Eng. 114(8), 1804–1823 (1988)

    Article  Google Scholar 

  24. Yang, K., Shi, Q.X., Zhao, J.L., et al.: Study on the constitutive model of high-strength-concrete confined by high strength stirrups. China Civil Eng. J. 46(1), 31–41 (2013). doi:10.15951/j.tmgcxb.2013.01.013

    Article  Google Scholar 

  25. Mander, J.B., Priestley, M.J.N., Park, R.: Observed stress-strain behavior of confined concrete. J. Struct. Eng. 114(8), 1827–1849 (1988)

    Article  Google Scholar 

  26. Giménez, E., Adam, J.M., Ivorra, S., Calderón, P.A.: Influence of strips configuration on the behavior of axially loaded RC columns strengthened by steel angles and strips. Mater. Des. 30(10), 4103–4111 (2009). doi:10.1016/j.matdes.2009.05.010

    Article  Google Scholar 

  27. Campione, G.: Load carrying capacity of RC compressed columns strengthened with steel angles and strips. Eng. Struct. 40(7), 457–465 (2012). doi:10.1016/j.engstruct.2012.03.006

    Article  Google Scholar 

  28. Jia, J.Q., Jiang, L.J., Zhao, G.F.: Study on the relationship between pressure coefficient and stirrup reinforcement ration of steel reinforced high strength concrete short column. Build. Struct. 32(10), 218–222 (2002)

    Google Scholar 

  29. Jia, J.Q., Sun, H.M., Li, D.Y.: Limited values on axial compression ratio of steel reinforced high-strength concrete short columns. J. Dalian Univ. Technol. 42(2), 67–70 (2002). doi:10.3321/j.issn:1000-8608.2002.02.019

    Article  Google Scholar 

  30. Song, K., Li, Z.B.: The seismic performance test of high axial compression ratio of RC short column under the oblique load. J. Northeast Pet. Univ. 38(2), 102–108+120 (2014). doi:10.3969/j.issn.2095-4107.2014.02.016

  31. GB50010-2010: Code for design of concrete structures. China Building Industry Press, Beijing (2010)

Download references

Acknowledgements

The research work reported herein was made possible by the financial support from National Natural Science Foundation of China (No.51178087); Natural Science Foundation of Heilongjiang Province (No.E201336); PetroChina Innovation Foundation (No.2016D-5007-0608); Nurturing Foundation of Northeast Petroleum University of National Natural Science Foundation of China (No.NEPUPY-1-16); Project of China Petroleum and Chemical Industry Association (No.2017-11-05); University Graduate Innovation Project of Northeast Petroleum University (No.YJSCX2016-031NEPU) and Special Foundation of The Education Department of Heilongjiang Province of Northeast Petroleum University Dominant research direction (No.2016YSFX-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, J., Zhang, W., Yuan, C. et al. Finite element model based test and analysis on ACHC short columns and hoop coefficient. Cluster Comput 22 (Suppl 3), 5333–5345 (2019). https://doi.org/10.1007/s10586-017-1230-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1230-8

Keywords

Navigation