Skip to main content
Log in

An anomaly detection method based on Lasso

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In many research and application fields, anomaly detection always is an important issue. In the article, a method of anomaly detection is presented which based on Lasso on the basis of variable linear regression solution of the Lasso problem. We transform the process of anomaly detection into a linear regression model, meanwhile, take the detection parameter as regression variables and establish the model of the regression variables and the dependent variable. Due to estimation of Lasso parameter own stable regression coefficient, can compress parameters of the model and reduce the number of parameters. Those characteristics accord with the requirement of stability, high-speed and simplicity which are needful for anomaly detection. Experimental results show that our method has higher detection accuracy and more rapid convergence ability under the constraints of the appropriate threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V, C., A, B., V, K.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Google Scholar 

  2. Huang, J., Kalbarczyk, Z., Nicol, D.M.: Knowledge Discovery from Big Data for Intrusion Detection Using LDA. In: 2014 IEEE International Congress on Big Data (BigData Congress), pp. 760–761 (2014)

  3. Li-ming, Z., Peng, Z., Wei-hong, Z., et al.: Anomaly detection in backbone networks using filter-ary-sketch. J. Commun. 32(12), 151–160 (2011)

    Google Scholar 

  4. M, X., S, H., Tian, B., et al.: Anomaly detection in wireless sensor networks: a survey. J. Netw. Comput. Appl. 34(4), 1302–1325 (2011)

    Article  Google Scholar 

  5. Ye-Kui, Q., Ming, C., Li-Xin, Y., et al.: Network-wide anomaly detection method based on multiscale principal component analysis. J. Softw. 23(2), 361–377 (2012)

    Article  Google Scholar 

  6. LI-Ming, Z., Peng, Z., Yan, J., et al.: How to extract and train classifier in traffic anomaly detection system. Chin. J. Comput. 35(4), 719–730 (2012)

    Article  Google Scholar 

  7. Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S.A.: Geometric framework for unsupervised anomaly detection. Adv. Inf. Sec. 6, 77–101 (2002)

    Google Scholar 

  8. C, K., G, V., W, R.: A multi-model approach to the detection of web-based attacks. Comput. Netw. 48(5), 717–738 (2005)

    Article  Google Scholar 

  9. J, S.S., F, A., Eskin, E., et al.: Aapplications of data mining in computer security. J. Comput. Sec. 13(4), 659–693 (2005)

    Article  Google Scholar 

  10. R, P., Ariu, D., Fogla, P., et al.: McPAD: a multiple classifier system for accurate payload-based anomaly detection. Comput. Netw. 53(6), 864–881 (2009)

    Article  MATH  Google Scholar 

  11. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., et al.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

    Article  MATH  Google Scholar 

  12. J, P., D, K., Kim, J., et al.: SVDD-based pattern denoising. Neural Comput. 19(7), 1919–1938 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tsang, C.H., Kwong, S., Wang, Hanli: Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection. Pattern Recognit. Lett. 40(9), 2373–2391 (2007)

    Article  MATH  Google Scholar 

  14. Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)

    Article  MATH  Google Scholar 

  15. Burbeck, K.: Current research and use of anomaly detection. In: Proceedings of the Fourteenth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 138–138 (2005)

  16. Markou, M., Singh, S.: Novelty detection: a review—part 1: statistical approaches. Signal Process. 83(12), 2481–2497 (2003)

    Article  MATH  Google Scholar 

  17. Bolton, P.: Banking in emerging markets. J. Financ. Intermed. 11, 11362–11365 (2002)

    Article  Google Scholar 

  18. Tax, D.M.J.: One-Class Classification: Concept-Learning in the Absence of Counter-Examples. Delft University of Technology, Delft (2001)

    Google Scholar 

  19. Gupta, M., Sharma, A.B., Chen, H.: Context-aware time series anomaly detection for complex systems. In: Workshop Notes, vol. 14 (2013)

  20. Feng, A., Chen, S.: Study on one-class classifiers based on Kernel method. J. NanJing Normal Univ. 8(4), 1–5 (2008)

    Google Scholar 

  21. Meinshausen, N., Yu, B.: Lasso-type recovery of sparse representations for high-dimensional data. Ann. Stat. 37(1), 246–270 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bickel, P.J., Ritov, Y.A., Tsybakov, A.B.: Simultaneous analysis of Lasso and Dantzig selector. Ann. Stat. 37(4), 1705–1732 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least Angle regression. Ann. Stat. 32(2), 407–499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, F., Lu, Y.-Q., Li, G.: Variable selection of the adaptive LASSO of part the linear model. Chin. J. Appl. Probab. Stat. 28(6), 614–624 (2012)

    MATH  Google Scholar 

  25. Zhang, H.H., Lu, W.: Adaptive Lasso for Cox’s proportional hazards model. Biometrika. 94(3), 691–703 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. L, M., VDG, S., P, B.: The group lasso for logistic regression. J. R. Stat. Soc. 70(1), 53–71 (2008)

    Article  MathSciNet  Google Scholar 

  27. Fu, S.: Hierarchical Bayesian LASSO for a negative binomial regression. J. Stat. Comput. Simul. 86(11), 2182–2203 (2016)

    Article  MathSciNet  Google Scholar 

  28. Lu, G., Zou, J., Wang, Y.: L1-norm and maximum margin criterion based discriminant locality preserving projections via trace Lasso. Pattern Recognit. Lett. 55, 207–214 (2016)

    Article  MATH  Google Scholar 

  29. Fosson, S., Matamoros, J., Anton-Haro, C., Magli, E.: Distributed recovery of jointly sparse signals under communication constraints. IEEE Trans. Signal Process. 64(13), 3470–3482 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (61303227), Chinese Postdoctoral Science Foundation (2015M580765), ChongQing Postdoctoral Science Foundation (Xm2016041), the Fundamental Research Funds for the Central Universities (XDJK2014C039, XDJK2016C045), Doctoral Fund of Southwestern University (swu1114033), the project of Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1403106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoling Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Peng, M., Xiong, H. et al. An anomaly detection method based on Lasso. Cluster Comput 22 (Suppl 3), 5407–5419 (2019). https://doi.org/10.1007/s10586-017-1255-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1255-z

Keywords

Navigation