Skip to main content
Log in

Supply allocation: bi-level programming and differential evolution algorithm for Natural Disaster Relief

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Delivering relief supplies to victims of natural disasters is a very complicated process faced with many challenges: damaged road network, high demand for various materials, scarcity of resources, multi-supply and multi-demand sites, limited transport capacity, etc. Traditionally, outreach maximization is the focus of emergency relief. In this research, we propose a bi-level programming model which takes the aforementioned challenges into full account. We consider two objectives: minimizing the distribution time, and maximizing the allocation fairness. Because the problem is NP-hard, we design an improved differential evolution (IDE) algorithm and numerically compare it with several conventional differential evolution algorithms, including CoDE, SaDE, JADE and JDE. We found that the proposed IDE outperforms the existing algorithms. The feasibility and validity of the proposed model and the IDE algorithm are verified by applying them to the 2008 Wenchuan earthquake in western China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. HolguÍn-Veras, J., Jaller, M., Van Wassenhove, L.N., Pérez, N., Wachtendorf, T.: Material convergence: important and under studied disaster phenomenon. Nat. Hazards Rev. 15(1), 1–12 (2012)

    Article  Google Scholar 

  2. Edrissi, A., Poorzahedy, H., Nassiri, H., Nourinej, M.: A multi-agent optimization formulation of earthquake disaster prevention and management. Eur. J. Oper. Res. 229, 261–275 (2013)

    Article  MathSciNet  Google Scholar 

  3. Wex, F., Schryen, G., Feuerriegel, S., Neumann, D.: Emergency response in natural disaster management: allocation and scheduling of rescue units. Eur. J. Oper. Res. 235(3), 697–708 (2014)

    Article  MathSciNet  Google Scholar 

  4. Rath, S., Gendreau, M., Gutjahr, W.J.: Bi-objective stochastic programming models for determining depot locations in disaster relief operations. Int. Trans. Oper. Res. 23(6), 997–1023 (2016)

    Article  MathSciNet  Google Scholar 

  5. Xu, J.P., Wang, Z.Q., Zhang, M.X., Tu, Y.: A new model for a 72-h post-earthquake emergency logistics location-routing problem under a random fuzzy environment. Trans. Lett. 8(5), 270–285 (2016)

    Article  Google Scholar 

  6. Chakravarty, A.K.: Humanitarian relief chain: rapid response under uncertainty. Int. J. Prod. Econ. 151, 146–157 (2014)

    Article  Google Scholar 

  7. Ransikarbum, K., Mason, S.J.: Multiple-objective analysis of integrated relief supply and network restoration in humanitarian logistics operations. Int. J. Prod. Res. 54(1), 49–68 (2016)

    Article  Google Scholar 

  8. Mete, H.O., Zabinsky, Z.B.: Stochastic optimization of medical supply location and distribution in disaster management. Int. J. Prod. Econ. 126(1), 76–84 (2010)

    Article  Google Scholar 

  9. Jacobson, E.U., Argon, N.T., Ziya, S.: Priority assignment in emergency response. Oper. Res. 60, 813–832 (2012)

    Article  MathSciNet  Google Scholar 

  10. Liberatore, F., Ortuno, M.T., Tirado, G., Vitoriano, B., Scaparra, M.P.: A hierarchical compromise model for the joint optimization of recovery operations and distribution of emergency goods in Humanitarian Logistics. Comput. Oper. Res. 42, 3–13 (2014)

    Article  MathSciNet  Google Scholar 

  11. Abounacer, R., Rekik, M., Renaud, J.: An exact solution approach for multi-objective location-transportation problem for disaster response. Comput. Oper. Res. 41, 83–93 (2014)

    Article  MathSciNet  Google Scholar 

  12. Lassiter, K., Khademi, A., Taaffe, K.M.: A robust optimization approach to volunteer management in humanitarian crises. Int. J. Prod. Econ. 163, 97–111 (2015)

    Article  Google Scholar 

  13. Ruan, J.H., Wang, X.P., Chan, F.T.S., Shi, Y.: Optimizing the intermodal transportation of emergency medical supplies using balanced fuzzy clustering. Int. J. Prod. Res. 54(14), 4368–4386 (2016)

    Article  Google Scholar 

  14. Bozorgi-Amiri, A., Jabalameli, M.S., Al-e-Hashem, S.M.: A multi-objective robust stochastic programming model for disaster relief logistics under uncertainty. OR Spectr. 35(4), 905–933 (2013)

    Article  MathSciNet  Google Scholar 

  15. Rath, S., Gutjahr, W.J.: A math-heuristic for the warehouse location-routing problem in disaster relief. Comput. Oper. Res. 42, 25–39 (2014)

    Article  MathSciNet  Google Scholar 

  16. SalmerÓn, J., Apte, A.: Stochastic optimization for natural disaster asset prepositioning. Prod. Oper. Manag. 19(5), 561–574 (2010)

    Article  Google Scholar 

  17. Rawls, C.G., Turnquist, M.A.: Pre-positioning of emergency supplies for disaster response. Transp. Res. B 44(4), 521–534 (2010)

    Article  Google Scholar 

  18. Hu, S.L., Han, C.F., Meng, L.P.: A scenario planning approach for propositioning rescue centers for urban waterlog disasters. Comput. Ind. Eng. 87, 425–435 (2015)

    Article  Google Scholar 

  19. Sheu, J.B.: An emergency logistics distribution approach for quick response to urgent relief demand in disasters. Transp. Res. E 43, 687–709 (2007)

    Article  Google Scholar 

  20. Camacho-Vallejo, J.F., Gonzalez-Rodriguez, E., Almaguer, F.J., Gonzalez-Ramirez, R.G.: A bi-level optimization model for aid distribution after the occurrence of a disaster. J. Clean. Prod. 105, 134–145 (2015)

    Article  Google Scholar 

  21. Kelle, P., Schneider, H., Yi, H.: Decision alternatives between expected cost minimization and worst case scenario in emergency supply-second revision. Int. J. Prod. Econ. 157, 250–260 (2014)

    Article  Google Scholar 

  22. Simpson, N.C., Hancock, P.G.: Fifty years of operational research and emergency response. J. Oper. Res. Soc. 60, 126–139 (2009)

    Article  Google Scholar 

  23. Jahangiri, A., Afandizadeh, S., Kalantari, N.: The optimization of traffic signal timing for emergency evacuation using the simulated annealing algorithm. Transport 26(2), 133–140 (2011)

    Article  Google Scholar 

  24. Zhang, L.Y., Teng F., Sun Y.S.: The research about simulated annealing ant colony algorithm in emergency logistics path optimization. In: Advanced Materials Research, vol. 482–484, pp. 2470–2474 (2012)

  25. Hu, F.Y., Xu, W., Li, X.: A modified particle swarm optimization algorithm for optimal allocation of earthquake emergency shelters. Int. J. Geogr. Inf. Sci. 26(9), 1643–1666 (2012)

    Article  Google Scholar 

  26. Chang, F.S., Wu, J.S., Lee, C.N., Shen, H.C.: Greedy-search-based multi-objective genetic algorithm for emergency logistics scheduling. Expert Syst. Appl. 41, 2947–2956 (2014)

    Article  Google Scholar 

  27. Goerigk, M., Deghdak, K., Hessler, P.: A comprehensive evacuation planning model and genetic solution algorithm. Trans. Res. E 71, 82–97 (2014)

    Article  Google Scholar 

  28. Zheng, Y.J., Chen, S.Y., Ling, H.F.: Evolutionary optimization for disaster relief operations: a survey. Appl. Soft Comput. 27, 553–566 (2015)

    Article  Google Scholar 

  29. Krishnamurthy, A., Roy, D., Bhat, S.: Analytical models for estimating waiting times at a disaster relief center. In: Humanitarian and Relief Logistics, vol. 54, pp. 21–41 (2013)

    Chapter  Google Scholar 

  30. Peng, M.: Replenishment decision for relief supplies: based on the post-seismic environment of WenChuan earthquake. Doctoral Dissertation (2012) (in Chinese)

  31. De la Torre, L., Dolinskaya, I., Smilowitz, K.: Disaster relief routing: integrating research and practice. Socio-Econ. Plan. 46, 88–97 (2012)

    Article  Google Scholar 

  32. Huang, K., Jiang, Y.P., Yuan, Y.F., Zhao, L.D.: Modeling multiple humanitarian objectives in emergency response to large-scale disasters. Transp. Res. Part E 75, 1–7 (2015)

    Article  Google Scholar 

  33. Bard, J.F.: Some properties of the bilevel linear programming. J. Optim. Theory Appl. 68(2), 371–378 (1991)

    Article  MathSciNet  Google Scholar 

  34. Jeroslow, R.G.: The polynomial hierarchy and a simple model for competitive analysis. Math. Program. 32(2), 146–164 (1985)

    Article  MathSciNet  Google Scholar 

  35. Noman, N., Iba, H.: Accelerating differential evolution using an adaptive local search. IEEE Trans. Evol. Comput. 12, 107–125 (2008)

    Article  Google Scholar 

  36. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13, 945–958 (2009)

    Article  Google Scholar 

  37. Brest, J., Greiner, S., Boskovic, B., Memik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10, 646–657 (2006)

    Article  Google Scholar 

  38. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13, 398–417 (2009)

    Article  Google Scholar 

  39. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trail vector generation strategies and control parameters. IEEE Trans. Evol. Comput. 15, 55–66 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Social Science Foundation of China (17BGL181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-xin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Yx., Tadikamalla, P.R., Shang, J. et al. Supply allocation: bi-level programming and differential evolution algorithm for Natural Disaster Relief. Cluster Comput 23, 203–217 (2020). https://doi.org/10.1007/s10586-017-1366-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1366-6

Keywords

Navigation