Abstract
This paper develops an efficient and parallel implementation of dynamically data-driven application systems inference using an ensemble Kalman filter based on shrinkage covariance matrix estimation. The proposed implementation works as follows: each model component is surrounded by a local box of radius size r and then, local assimilation steps are carried out in parallel at the different local boxes. Once local analyses are obtained, they are mapped back onto the global domain from which the global analysis state is obtained. Local background error correlations are estimated using the Rao–Blackwell Ledoit and Wolf estimator in order to mitigate the impact of spurious correlations whenever the number of local model components is larger than the ensemble size. The numerical atmospheric general circulation model (SPEEDY) is utilized for the numerical experiments with the T-63 resolution on the BlueRidge cluster at Virginia Tech. The number of processors ranges from 96 to 2048. The proposed implementation outperforms in terms of accuracy the well-known local ensemble transform Kalman filter (LETKF) for all the model variables. The computational time of the proposed implementation is similar to that of the parallel LETKF method (where no covariance estimation is performed) for the largest number of processors.







Similar content being viewed by others
References
Anderson, J.L.: Localization and sampling error correction in ensemble Kalman filter data assimilation. Mon. Weather Rev. 140(7), 2359–2371 (2012)
Anderson, J.L., Anderson, S.L.: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Weather Rev. 127(12), 2741–2758 (1999)
Anderson, E., Bai, Z., Dongarra, J., Greenbaum, A., McKenney, A., Du Croz, J., Hammerling, S., Demmel, J., Bischof, C., Sorensen, D.: LAPACK: a portable linear algebra library for high-performance computers. In: Proceedings of the 1990 ACM/IEEE Conference on Supercomputing, Supercomputing ’90, pp. 2–11. IEEE Computer Society Press, Los Alamitos (1990)
Aved, A., Darema, F., Blasch, E.: Dynamic data driven application systems. www.1dddas.org (2014)
Blackford, L.S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G., Heroux, M., Kaufman, L., Lumsdaine, A., Petitet, A., Pozo, R., Remington, K., Whaley, R.C.: An updated set of basic linear algebra subprograms (BLAS). ACM Trans. Math. Softw. 28, 135–151 (2001)
Blasch, E., Seetharaman, G., Reinhardt, K.: Dynamic data driven applications system concept for information fusion. Proc. Comput. Sci. 18, 1999–2007 (2013). 2013 International Conference on Computational Science
Chen, Y., Wiesel, A., Eldar, Y.C., Hero, A.O.: Shrinkage algorithms for MMSE covariance estimation. IEEE Trans. Signal Process. 58(10), 5016–5029 (2010)
Cheng, H., Jardak, M., Alexe, M., Sandu, A.: A hybrid approach to estimating error covariances in variational data assimilation. Tellus A 62(3), 288–297 (2010)
Cheng, H., Jardak, M., Alexe, M., Sandu, A.: A hybrid approach to estimating error covariances in variational data assimilation. Tellus A 62(3), 288–297 (2010)
Couillet, R., McKay, M.: Large dimensional analysis and optimization of robust shrinkage covariance matrix estimators. J. Multivar. Anal. 131, 99–120 (2014)
Daniels, M.J., Kass, R.E.: Shrinkage estimators for covariance matrices. Biometrics 57(4), 1173–1184 (2001)
Evensen, G.: Data assimilation: the ensemble Kalman filter. Springer, Secaucus (2006)
Evensen, G.: EnKF—the ensemble Kalman filter. http://enkf.nersc.no/ (2015). Accessed 24 Apr 2015
Godinez, H.C., Moulton, J.D.: An efficient matrix-free algorithm for the ensemble Kalman filter. Comput. Geosci. 16(3), 565–575 (2012)
Jonathan, P., Fuqing, Z., Weng, Y.: The effects of sampling errors on the EnKF assimilation of inner-core hurricane observations. Mon. Weather Rev. 142(4), 1609–1630 (2014)
Keppenne, C.L.: Data assimilation into a primitive-equation model with a parallel ensemble Kalman filter. Mon. Weather Rev. 128(6), 1971–1981 (2000)
Kucharski, F., Molteni, F., Bracco, A.: Decadal interactions between the western tropical Pacific and the North Atlantic oscillation. Clim. Dynam. 26(1), 79–91 (2006)
Ledoit, O., Wolf, M.: Honey, i shrunk the sample covariance matrix. UPF economics and business working paper (691) (2003)
Ledoit, O., Wolf, M.: A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal. 88(2), 365–411 (2004)
Lorenc, A.C.: Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc. 112(474), 1177–1194 (1986)
Molteni, F.: Atmospheric simulations using a GCM with simplified physical parametrizations. I: model climatology and variability in multi-decadal experiments. Clim. Dynam. 20(2–3), 175–191 (2003)
Nino-Ruiz, E.D., Sandu, A.: An efficient parallel implementation of the ensemble Kalman filter based on shrinkage covariance matrix estimation. In: Proceedings of the 2015 IEEE 22nd International Conference on High Performance Computing Workshops (HiPCW). IEEE Computer Society (2015)
Nino-Ruiz, E.D., Sandu, A.: Ensemble Kalman filter implementations based on shrinkage covariance matrix estimation. Ocean Dynam. 65(11), 1423–1439 (2015)
Nino-Ruiz, E.D., Sandu, A., Anderson, J.: An efficient implementation of the ensemble Kalman filter based on an iterative Sherman-Morrison formula. Stat. Comput. 25(3), 561–577 (2015)
Ott, E., Hunt, B.R., Szunyogh, I., Zimin, A.V., Kostelich, Eric J, Corazza, Matteo, Kalnay, Eugenia, Patil, D .J., Yorke, James A: A local ensemble Kalman filter for atmospheric data assimilation. Tellus A 56(5), 415–428 (2004)
Ott, E., Hunt, B., Szunyogh, I., Zimin, A.V., Kostelich, Eic J, Corazza, Matteo, Kalnay, Eugenia, Patil, D .J., Yorke, James A: A local ensemble transform Kalman filter data assimilation system for the NCEP global model. Tellus A 60(1), 113–130 (2008)
Petra, C.G., Zavala, V.M., Nino-Ruiz, E.D., Anitescu, M.: A high-performance computing framework for analyzing the economic impacts of wind correlation. Electr. Power Syst. Res. 141, 372–380 (2016)
Rao, V., Sandu, A.: A posteriori error estimates for DDDAS inference problems. In: Proceedings of the International Conference on Computational Science (ICCS-2014), vol. 29, pp. 1256–1265 (2014)
Rao, V., Sandu, A.: A posteriori error estimates for inverse problems. SIAM/ASA J. Uncertain. Quantif. 3(1), 737–761 (2015)
Sakov, P., Bertino, L.: Relation between two common localisation methods for the ENKF. Comput. Geosci. 15(2), 225–237 (2011)
Sandu, A., Constantinescu, E.M., Carmichael, G.R., Chai, T., Daescu, D., Seinfeld, J.H.: Ensemble methods for dynamic data assimilation of chemical observations in atmospheric models. J. Algorithms Comput. Technol. 5(4), 667–692 (2011)
Schäfer, J., Strimmer, K., et al.: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 4(1), 32 (2005)
Xiaohui, C., Wang, Z.J., McKeown, M.J.: Shrinkage-to-tapering estimation of large covariance matrices. IEEE Trans. Signal Process. 60(11), 5640–5656 (2012)
Zupanski, M.: Theoretical and practical issues of ensemble data assimilation in weather and climate. In: Park, S.K., Xu, L. (eds.) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, pp. 67–84. Springer, Berlin, Heidelberg (2009)
Acknowledgements
This work was supported in part by awards NSF CCF-1218454, AFOSR FA9550-12-1-0293-DEF, and by the Computational Science Laboratory at Virginia Tech.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nino-Ruiz, E.D., Sandu, A. Efficient parallel implementation of DDDAS inference using an ensemble Kalman filter with shrinkage covariance matrix estimation. Cluster Comput 22 (Suppl 1), 2211–2221 (2019). https://doi.org/10.1007/s10586-017-1407-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-017-1407-1