Skip to main content
Log in

An improved LLE-based cluster security approach for nonlinear system fault diagnosis

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

This paper proposes a novel improved LLE-based (local linear embedding) approach (TLLE) for solving the fault diagnosis problem of the nonlinear system. Firstly, tangent space distance is introduced to LLE approach, which can satisfy the local linearity of LLE and better preserve the local manifold features of the original data simultaneously. Then, to solve the problem of inner dimension in LLE approach is hard to estimate, the method of intrinsic dimension estimation based on fractal dimension is employed in the approach by means of linear fitting. Furthermore, a fault diagnosis scheme is presented based on the TLLE approach. We combine fault state with special distribution to complete the fault diagnosis, which can simplify the computation obviously and improve the real-time capability of the approach. Finally, numerical simulations of the TE process data are performed to illustrate the effectiveness of the proposed fault diagnosis scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang, J., Swain, A.K., Nguang, S.K.: Robust Observer-Based Fault Diagnosis for Nonlinear Systems Using MATLAB. Springer, Switzerland (2016)

    Book  Google Scholar 

  2. Gao, Z., Cecati, C., Ding, S.X.: A survey of fault diagnosis and fault-tolerant techniques: part i: fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 62(6), 3757–3767 (2015)

    Article  Google Scholar 

  3. Hotelling, H.: Analysis of a complex of statistical variables into principal components. Br. J. Educ. Psychol. 24(6), 417–520 (1933)

    Article  Google Scholar 

  4. Good, R.P., Kost, D., Cherry, G.A.: Introducing a unified PCA approach for model size reduction. IEEE Trans. Semicond. Manuf. 23(2), 201–209 (2010)

    Article  Google Scholar 

  5. Scholkopf, B., Smola, A.J., Muller, K.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  6. Ni, J., Zhang, C., Ren, L., Yang, S.X.: Abrupt event monitoring for water environment system based on KPCA and SVM. IEEE Trans. Instrum. Meas. 61(4), 980–989 (2012)

    Article  Google Scholar 

  7. Yoshikazu, W.: Adaptive subset kernel principal component analysis for time-varying patterns. IEEE Trans. Neural Netw. Learn. Syst. 23(12), 1961–1973 (2012)

    Article  Google Scholar 

  8. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(22), 2323–2326 (2000)

    Article  Google Scholar 

  9. Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  10. Samuel, K., Martin, D.L.: Face Diagnosis in Gray Scale Images Using Locally Linear Embeddings. Elsevier, Amsterdam (2007)

    Google Scholar 

  11. Hadid, A., Koouropteva, O., Pietikainen, M.: Unsupervised learning using locally linear embedding: experiments with face pose analysis, pp. 111–114. In: Proceedings of the 16th International Conference on Pattern Recognition (2002)

  12. Heureuxa, P.J., Carreaua, J., Bengioa, Y., Delalleaua, O., Yueb, S.Y.: Locally linear embedding for dimensionality reduction in QSAR. J. Comput. Aided Mol. Des. 18, 475–482 (2004)

    Article  Google Scholar 

  13. Zhao, S., Zhu, S.A.: Face recognition by LLE dimensionality reduction. Fourth Int. Conf. Intell. Comput. Technol. Autom. 2011, 121–123 (2011)

    Google Scholar 

  14. Sun, B.Y., Zhang, X.M., Li, J., Mao, X.M.: Feature fusion using locally linear embedding for classification. IEEE Trans. Neural Netw. 21(1), 163–168 (2010)

    Article  Google Scholar 

  15. Li, Z., Yan, X., Yuan, C., Zhao, J., Peng, Z.: A new method of nonlinear feature extraction for multi-fault diagnosis of rotor systems. Noise Vib. Worldw. 41(10), 29–37 (2010)

    Article  Google Scholar 

  16. Ridder, D.D., Kouropteva, O., Okun, O.: Supervised Locally Linear Embedding, Joint International Conference on Artificial Neural Networks and Neural Information Processing, pp. 333–341. Springer, New York (2003)

    MATH  Google Scholar 

  17. Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 4(2), 119–155 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Hastie, T., Tibshirani, R.: Discriminant adaptive nearest-neighbor classification. IEEE Pattern Recognit. Mach. Intell. 243(18), 607–616 (1996)

    Article  Google Scholar 

  19. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  20. Min, W.L., Lu, L., He, X.F.: Locality pursuit embedding. Pattern Recognit. 37(4), 781–788 (2004)

    Article  Google Scholar 

  21. K\(\acute{\rm {e}}\)gl, B.: Intrinsic dimension estimation using packing numbers, pp. 697–704. In: Advances in Neural Information Processing Systems (2002)

  22. Grassbergel, J., Procacria, I.: Measuring the strangeness of strange attractor. Physical D 9, 189–208 (1983)

    Article  MathSciNet  Google Scholar 

  23. Bengio, Y., Vincent, P., Delalleau, O., Roux, N. L., Ouimet, M.: Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering, pp. 177–184. In: International Conference on Neural Information Processing Systems, MIT Press (2003)

  24. Taylor, J.S., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  25. Downs, J.J., Vogel, E.F.: Plant-wide industrial process control problem. Comput. Chem. Eng. 17(3), 245–255 (1993)

    Article  Google Scholar 

  26. Chiang, L.H., Russell, E.L., Braatz, R.D.: Fault Diagnosis and Diagnosis in Industrial Systems. Advanced Textbooks in Control and Signal Processing. Springer, London (2001)

    Book  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant 51505470 and 51605474, The State Key Laboratory of Robotics under Grant Y7C1200301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Gao.

Ethics declarations

Conflicts of interest

The author(s) declare(s) that there is no conflict of interests regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Gao, S. & He, X. An improved LLE-based cluster security approach for nonlinear system fault diagnosis. Cluster Comput 22 (Suppl 3), 5663–5673 (2019). https://doi.org/10.1007/s10586-017-1450-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1450-y

Keywords

Navigation