Skip to main content
Log in

Implementation of flexible denim nickel copper rip stop textile antenna for medical application

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Huge processing and complex body area Networks (BAN) will be needed in the future to provide the powerful computational functionalities required for advanced applications. These requirements have led to increasing research activities in the area of wireless BAN. This paper presents the analysis of rectangular shaped inset feed microstrip patch flexible pure textile antenna for conductive textile material patch and ground with common substrate are used for wireless communication. The flexible pure textile antenna was simulated using ADS 2013.06 software and measured in N9926A 14 GHz Field Fox Handheld Vector Network Analyzer for the ISM band operated at the resonant frequency of 2.45 GHz. To analyze its performance, conductive textile material Nickel copper rip stop fabric and denim textile material as substrate was chosen. The design specification carried out by transmission line model method using inset feed techniques. The flexible pure textile antenna was analyzed in both off and on body mode of BAN operation and compared by the performance parameters like VSWR, reflection coefficient, bandwidth, impedance, directivity and gain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pozar, D.M.: Microstrip antennas. Proc. IEEE 80, 79–91 (1992)

    Article  Google Scholar 

  2. Tronquo, A., Rogier, H., Hertleer, C., Van Langenhove, L.: Robust planar textile antenna for wireless body LANs operating in 2.45 GHz ISM band. IEE Electron. Lett. 42(3), 142–143 (2006)

    Article  Google Scholar 

  3. Wearable antennas: integration of antenna technologies with textiles for future warrior systems. http://www.natick.army.mil/soldier/media

  4. Yavalkar, S.S., et al.: Comparative analysis of bandwidth enhancement of microstrip patch antenna using various geometries. IOSR J. Electron. Commun. Eng. 3(4), 15–18 (2012)

    Article  Google Scholar 

  5. Kumar, A., et al.: Bandwidth enhancing technique in the designing of wireless microstrip patch antenna. Int. J. Rev. Electron. Commun. Eng. 1(2), 28–31 (2013)

    Google Scholar 

  6. Yavalkar, S.S., et al.: Parametric study for rectangular microstrip patch antennas. IOSR J. Electron. Commun. Eng. 5(2), 49–53 (2013)

    Article  Google Scholar 

  7. Karimi, R., Mohtaram, F., Ottaghitalab, V., Mehrizi, M.K.: Development of wearable rectangular textile antenna and investigation of its performance under bent condition at different angles. J. Ind. Textiles, 1528083716670313v1–1528083716670313 (2016)

  8. http://www.producao.usp.br/handle/BDPI/44285-Parametric study of Rectangular Patch antenna using denim textile material

  9. www.britannica.com

  10. Sankaralingam, S., Gupta, B.: Development of textile antennas for body wearable applications on their performance under bent conditions. Prog. Electromagn. Res. B 22, 53–71 (2010)

    Article  Google Scholar 

  11. Salvado, R., Loss, C., Gonçalves, R., Pinho, P.: Textile materials for the design of wearable antennas: a survey. Sensors (Basel) 12(11), 15741–15847 (2012)

    Article  Google Scholar 

  12. Sangaralingam, S., Gupta, B.: Determination of dielectric constant of fabric materials and their use as substrates for design and development of antennas for wearable applications. IEEE Trans. Instrum. Meas. 59(12) (2010)

  13. Chou, Y.H., Jeng, M.J., Lee, Y.H., Jan, Y.G.: The measurements of RF dielectric constant, dielectric loss coefficient, and conductor loss coefficient in PCB. In: Progress In Electromagnetic Research Symposium, pp. 264—267 (2010)

  14. http://www.lessemf.com/1212.p

  15. http://biznetmall.com/antiradiation/fabric.htm

  16. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522988

  17. Osman, M.A.R., et al.: The investigation of flannel fabric layers. In: 2010 International Symposium on Antennas and Propagations, Macao, China, 23–26 (2010)

  18. Chen, Y., Yang, S., He, S., Nie, Z.-P.: Design and analysis of wideband planar monopole antennas using the multilevel fast multiple algorithm. Prog. Electromagn. Res. B 15, 95–112 (2009)

    Article  Google Scholar 

  19. Hu, Y., Jackson, D.R., Williams, J.T., Long, S.A.: A design approach for inset-fed rectangular microstrip antennas. In: AP-S International Symposium, pp. 1491–1494 (2006)

  20. Ryckaert, J., De Doncker, P., Meys, R., de Le Hoye, A., Donnay, S.: Channel model for wireless communications around human body. IEE Electron. Lett. 40, 543–544 (2004)

    Article  Google Scholar 

  21. Elba Sheer, M.K., Osman, M.A.R., Abuelnuor, A., Rahim, M.K.A., Ali, M.E.: Conducting materials effect on UWB wearable textile antenna. In: Proceedings of the World Congress on Engineering 2014, Vol. 1, WCE 2014, July 2–4, London, UK (2014)

  22. 3 Artech-Microstrip antenna design hand book—Ramesh garg

  23. Stephygraph, L.R., Arunkumar, N.: Brain-actuated wireless mobile robot control through an adaptive human–machine interface. Adv. Intell. Syst. Comput. 397, 537–549 (2016)

    Google Scholar 

  24. Hamza, R., Muhammad, K., Arunkumar, N., González, G.R.: Hash based encryption for keyframes of diagnostic hysteroscopy. IEEE Access (2017). https://doi.org/10.1109/ACCESS.2017.2762405

  25. Fernandes, S.L., Gurupur, V.P., Sunder, N.R., Arunkumar, N., Kadry, S.: A novel nonintrusive decision support approach for heart rate measurement. Pattern Recognit. Lett. (2017). https://doi.org/10.1016/j.patrec.2017.07.002

  26. Arunkumar, N., Ramkumar, K., Venkatraman, V., Abdulhay, E., Fernandes, S.L., Kadry, S., Segal, S.: Classification of focal and non focal EEG using entropies. Pattern Recognit. Lett. 94, 112–117 (2017)

    Article  Google Scholar 

  27. Arunkumar, N., Kumar, K.R., Venkataraman, V.: Automatic detection of epileptic seizures using new entropy measures. J. Med. Imaging Health Inform. 6(3), 724–730 (2016)

    Article  Google Scholar 

  28. Arunkumar, N., Ram Kumar, K., Venkataraman, V.: Automatic detection of epileptic seizures using permutation entropy. Tsallis entropy and Kolmogorov complexity. J. Med. Imaging Health Inform. 6(2), 526–531 (2016)

    Article  Google Scholar 

  29. Qiu, T., Zhang, Y., Qiao, D., Zhang, X., Wymore, M.L., Sangaiah, A.K.: A robust time synchronization scheme for industrial internet of things. IEEE Trans. Ind. Inform. (2017). https://doi.org/10.1109/TII.2017.2738842

  30. Medhane, D.V., Sangaiah, A.K.: Search space-based multi-objective optimization evolutionary algorithm. Comput. Electr. Eng. 58, 126–143 (2017)

    Article  Google Scholar 

  31. Park, S., Jayaraman, S.: Enhancing the quality of life through wearable technology. IEEE Eng. Med. Biol. Mag. 22(3), 41–48 (2003)

    Article  Google Scholar 

  32. Arunkumar, N., Kumar, K.R., Venkataraman, V.: Automatic detection of epileptic seizures using new entropy measures. J. Med. Imaging Health Inform. 6(3), 724–730 (2016)

    Article  Google Scholar 

  33. Balanis, Y.: C.A. Antenna Theory: Analysis and Design, 3rd edn. Wiley Interscience, Hoboken (2005)

    Google Scholar 

  34. Rais, H.M., Soh, P.J., Malek, F., Ahmad, S., Hashim, N.B.M., Hall, P.S: A review of wearable antenna

  35. Sankaralingam, S., Gupta, Bhaskar, Dhar, S.: “Development of Wearable antenna and Implantable antenna in last decade: A review”; IEEE Trans Aug. (2010)

  36. Sankaralingam, S., Gupta, B.: Determination of dielectric constant of fabric materials and their use as substrates for design and development of antennas for wearable applications. IEEE Trans. Instrum. Meas. 59(12) (2010)

  37. Ouyang, Y., Chappell, W.J.: High frequency properties of electro-textiles for wearable antenna applications. IEEE Trans. Antennas Propag. 56(2), 381–389 (2008)

    Article  Google Scholar 

  38. Osman, M.A.R., Rahim, M.K.A., Elbasheer, M.K., Ali, M.F., Samsuri, N.A.: Compact fully textile UWB antenna for monitoring applications. In: 2011 Asia-Pacific Microwave Conference (APMC), Melbourne, Australia, December 5–8 (2011)

  39. Qiu, T., Qiao, R., Han, M., Sangaiah, A.K., Lee, I.: A lifetime-enhanced data collecting scheme for internet of things. IEEE Commun. Mag. 55(11), 132–137 (2017)

    Article  Google Scholar 

  40. Wu, F., Li, X., Sangaiah, A.K., Xu, L., Kumari, S., Wu, L., Shen, J.: A lightweight and robust two-factor authentication scheme forpersonalized healthcare systems using wireless medical sensor networks. Future Gener. Comput. Syst. (2017). https://doi.org/10.1016/j.future.2017.08.042

  41. Aborokbah, M.M., Al-Mutairi, S., Sangaiah, A.K., Samuel, O.W.: Adaptive context aware decision computing paradigm for intensive health care delivery in smart cities—a case analysis. Sustain. Cities Soc. (2017). https://doi.org/10.1016/j.scs.2017.09.004

Download references

Acknowledgements

We wish to express our gratitude towards the KEYSIGHT -PSNA CENTRE OF EXCELLENCE in RF Communication and Circuit Design, Department of Electronics and Communication, PSNA College of Engineering and Technology, Tamil Nadu for providing us to use the laboratory facilities for both measurement and simulation have been done by using N9926A 14GHz Field Fox Handheld Vector Network Analyzer and Advanced design system 2013.06 software and their kind support to carried out this work successfully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Thangaselvi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thangaselvi, E., Meena alias Jeyanthi, K. Implementation of flexible denim nickel copper rip stop textile antenna for medical application. Cluster Comput 22 (Suppl 1), 635–645 (2019). https://doi.org/10.1007/s10586-017-1647-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1647-0

Keywords

Navigation