Skip to main content

Advertisement

Log in

Non-contact detection of human heart rate with Kinect

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Non-contact detection of heart rate has been addressed by researchers from very different fields. However, the low accuracy of measuring results in the difficulties in methodology deployment. This paper introduces the principle of heartbeat detection. A detection scheme by using Kinect is proposed. Further, the signal processing approach based on JADE algorithm is developed to efficiently remove the clutter in mixture signals, and it enables accurate transforming via Z-score normalization. Due to the significances presented in this work, the detection error is 1.79%, when processed with the proposed algorithm. Experimental results are statistically analyzed, which makes it a promising basis for the realization of heart rate detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chatlapalli, S.M.: An integrated signal processing environment for detection of sleep disordered breathing in children using spectral and nonlinear dynamic measures of heart rate variability signal, Master Dissertation. The University of Texas at El Paso, El Paso (2005)

  2. Billman, G.E.: Heart rate variability—a historical perspective. Front. Physiol. 2, 86 (2011)

    Article  Google Scholar 

  3. Gan, K.B., Zahedi, E., Ali, M.A.: Transabdominal fetal heart rate detection using NIR photopleythysmography: instrumentation and clinical results. IEEE Trans. Biomed. Eng. 56(8), 2075–2082 (2009)

    Article  Google Scholar 

  4. Freeman, R.K., Garite, T.J., Nageotte, M.P.: Fetal Heart Rate Monitoring, 3rd edn. Williams & Wilkins, Philadelphia (2003)

    Google Scholar 

  5. Cho, H.S., Park, Y.J., Lyu, H.K., Cho, J.H.: Novel heart rate detection method using UWB impulse radar. J. Signal Process. Syst. 87, 229–239 (2017)

    Article  Google Scholar 

  6. Bilich, C.G.: Bio-Medical sensing using ultra wideband communications and radar technology: a feasibility study. In: Proceedings of the Pervasive Health Conference and Workshops, pp. 1–9 (2009)

  7. Sandham, W., Hamilton, D., Laguna, P., Cohen, M.: Advances in electrocardiogram signal processing and analysis. EURASIP J. Adv. Signal Process. 2007(1), 105 (2007)

    Article  Google Scholar 

  8. Liu, B., Li, J., Chen, C., Tan, W., Chen, Q., Zhou, M.: Efficient motif-discovery for large-scale time series in healthcare. IEEE Trans. Ind. Inform. 11(3), 583–590 (2015)

    Article  Google Scholar 

  9. Fan, X., Chen, R., He, C., Cai, Y., Wang, P., Li, Y.: Toward automated analysis of electrocardiogram big data by graphics processing unit for mobile health application. IEEE Access 5, 17136–17148 (2017)

    Article  Google Scholar 

  10. Thakor, N.V., Zhu, Y.-S.: Applications of adaptive filtering to ECG analysis: noise cancellation and arrhythmia detection. IEEE Trans. Bio-med. Eng. 38(8), 785–794 (1991)

    Article  Google Scholar 

  11. Moody, G.B., Mark, R.G.: Development and evaluation of a two-lead ECG analysis program. Comput. Cardiol. 9, 39–44 (1982)

    Google Scholar 

  12. Zhang, Q., Zhou, D., Zeng, X.: A novel framework for motion-tolerant instantaneous heart rate estimation by phase-domain multiview dynamic time warping. IEEE Trans. Biomed. Eng. 64(11), 2562–2574 (2017)

    Article  Google Scholar 

  13. Shastri, D.: Imaging facial signs of neurophysiological responses. IEEE Trans. Biomed. Eng. 56(2), 477–484 (2009)

    Article  Google Scholar 

  14. Garbey, M.: Contact-free measurement of cardiac pulse based on the analysis of thermal imagery. IEEE Trans. Biomed. Eng. 54(8), 1418–1426 (2007)

    Article  Google Scholar 

  15. Holdsworth, D.: Characterization of common carotid artery blood-flow waveforms in normal human subjects. Physiol. Meas. 20(3), 219–220 (1999)

    Article  Google Scholar 

  16. Poh, M.Z., McDuff, D.J., Picard, R.W.: Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt. Express 18(10), 10762–10774 (2010)

    Article  Google Scholar 

  17. Poh, M.Z., McDuff, D.J., Picard, RW.: A medical mirror for non-contact health monitoring. In: ACM SIGGRAPH 2011 Emerging Technologies, p. (2011)

  18. González-Landaeta, R., Casas, O., Pallàs-Areny, R.: Heart rate detection from plantar bioimpedance measurements. IEEE Trans. Biomed. Eng. 55(3), 1163–1167 (2008)

    Article  Google Scholar 

  19. Wu, H.Y., Rubinstein, M., Shih, E., et al.: Eulerian video magnification for revealing subtle changes in the world. ACM Trans. Graph. 31(4), 13–15 (2012)

    Article  Google Scholar 

  20. Kim, S.W., Choi, S.B., An, Y.J., Kim, B.H., Kim, D.W., Yook, J.G.: Heart rate detection during sleep using a flexible RF resonator and injection-locked PLL sensor. IEEE Trans. Biomed. Eng. 62(11), 2568–2575 (2015)

    Article  Google Scholar 

  21. He, Q., Wang, Y.: Research on system of facial expression capture and animation simulation based on kinect. J. Graph. 37(3), 290–295 (2016)

    Google Scholar 

  22. Qu, C., Sun, J., Wang, J., Zhu, X.: Automatic fall detection for the elderly using kinect sensor. Chin. J. Sens. Actuators 29(3), 013 (2016)

    Google Scholar 

  23. Shen, S., Gao, F., Xu, N.: The game of virtual reality head rehabilitation based on Kinect. J. Syst. Simul. 28(8), 1904–1908 (2016)

    Google Scholar 

  24. Ma, S., Zhou, C., Zhang, L., Hong, W.: Twist-lock online recognition based on improved incremental PCA by Kinect. J. Jilin Univ. 46(3), 890–896 (2016)

    Google Scholar 

  25. Kraus, U., Schneider, A., Breitner, S., Hampel, R., Rükerl, R., Pitz, M., Geruschkat, U., Belcredi, P., Radon, K., Peters, A.: Individual daytime noise exposure during routine activities and heart rate variability in adults: a repeated measures study. Environ. Health Perspect. 121, 607–612 (2013)

    Article  Google Scholar 

  26. Allen, J.: Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 28(3), 1–39 (2007)

    Article  Google Scholar 

  27. Hattay, J., Belaid, S., Lebrun, D., Naanaa, W.: Digital in-line particle holography: twin-image suppression using sparse blind source separation. Signal Image Video Process 9(8), 1767–1774 (2015)

    Article  Google Scholar 

  28. Yin, P., Sun, Y., Xin, J.: A geometric blind source separation method based on facet component analysis. Signal Image Video Process 10(1), 19–28 (2016)

    Article  Google Scholar 

  29. Mowla, M.R., Ng, S.C., Zilany, M.S., Paramesran, R.: Artifactsmatched blind source separation and wavelet transform for multichannel EEG denoising. Biomed. Signal Process. Control 22, 111–118 (2015)

    Article  Google Scholar 

  30. Badawi, W.K.M., Chibelushi, C.C., Patwary, M.N., Moniri, M.: Specular-based illumination estimation using blind signal separation techniques. IET Image Process. 6(8), 1181–1191 (2012)

    Article  MathSciNet  Google Scholar 

  31. Nordhausen, K., Cardoso, J.F., Miettinen, J., et al.: JADE and other BSS methods as well as some BSS performance criteria. R package version 1.1-0 (2012)

  32. Zhou, X., Li, K., Zhou, Y., Li, K.: Adaptive processing for distributed skyline queries over uncertain data. IEEE Trans. Knowl. Data Eng. 28(2), 371–384 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was provided by National Natural Science Foundation of China (61402165), Hunan Provincial Natural Science Foundation of China (2016JJ5036 and 2015JJ3058), Key Scientific Research Fund of Hunan Provincial Education Department in China (17A052), and Aid program for Science and Technology Innovative Research Team in High Educational Institutions of Hunan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqian Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Yin, M., Xu, X. et al. Non-contact detection of human heart rate with Kinect. Cluster Comput 22 (Suppl 4), 8199–8206 (2019). https://doi.org/10.1007/s10586-018-1716-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-1716-z

Keywords

Navigation