Skip to main content

Advertisement

FCC: Fast congestion control scheme for wireless sensor networks using hybrid optimal routing algorithm

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Wireless sensor networks experience congestion when high-density sensor nodes move with an increased flow rate generating heavy traffic. As a result, performance of the network is severely affected leading to packet loss, reduction of network lifetime and an increase in energy consumption. Many works have focusedto reduce these problems without considering mobility. To overcome this,a fast Congestion control (FCC) technique is introduced based on routingwith ahybrid optimization algorithm. The proposed scheme consists of two processing steps.First, we propose a multi-input time on task optimization algorithm for selecting proper next hop with minimal unwanted queuing delay. Then, we propose an altered gravitational search algorithm formaking energy efficient route between source to destination. The proposed FCC scheme resists the congestion by enhancing the routing in order to select the best next node during the data forwarding. The experimental resultshows that the proposed FCC scheme effectively reduces the data loss, energy consumption, and maximizes the average hop counts, network lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jiang, W., Miao, C., Su, L., Li, Q., Hu, S., Wang, S., Gao, J., Liu, H., Abdelzaher, T., Han, J., Liu, X., Gao, Y., Kaplan, L.: Towards quality aware information integration in distributed sensing systems. IEEE Trans Parallel Distrib. Syst. 29(1), 198–211 (2017)

    Article  Google Scholar 

  2. Skog, I., Karagiannis, I., Bergsten, A., Harden, J., Gustafsson, L., Handel, P.: A smart sensor node for the internet-of-elevators–non-invasive condition and fault monitoring. IEEE Sens. J. 17, 5198–5208 (2017)

    Article  Google Scholar 

  3. Wang, C., Lin, H., Jiang, H.: CANS: towards congestion-adaptive and small stretch emergency navigation with wireless sensor networks. IEEE Trans. Mob. Comput. 15(5), 1077–1089 (2016)

    Article  Google Scholar 

  4. Wang, G., Xin, J., Chen, L., Liu, Y.: Energy-efficient reverse skyline query processing over wireless sensor networks. IEEE Trans. Knowl. Data Eng. 24(7), 1259–1275 (2012)

    Article  Google Scholar 

  5. Kong, L., Xia, M., Liu, X., Chen, G., Gu, Y., Wu, M., Liu, X.: Data loss and reconstruction in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 25(11), 2818–2828 (2014)

    Article  Google Scholar 

  6. Li, X., Sun, S.: H\(_{\infty }\) filtering for multiple channel systems with varying delays, consecutive packet losses and randomly occurred nonlinearities. Signal Process. 105, 109–121 (2014)

    Article  Google Scholar 

  7. Liu, K., Fridman, E., Johansson, K., Xia, Y.: Quantized control under round-robin communication protocol. IEEE Trans. Ind. Electron. 63(7), 4461–4471 (2016)

    Article  Google Scholar 

  8. Mirzavand, R., Honari, M., Mousavi, P.: Direct-conversion sensor for wireless sensing networks. IEEE Trans. Ind. Electron. 64, 9675–9682 (2017)

    Article  Google Scholar 

  9. Zhao, S., Wang, P., He, J.: Simulation analysis of congestion control in WSN based on AQM. In: 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC) (2011)

  10. Sunitha, G., Kumar, S., Kumar, B.: A pre-emptive multiple queue based congestion control for different traffic classes in WSN. In: International Conference on Circuits, Communication, Control and Computing (2014)

  11. Justus, J., Sekar, A.: Congestion control in wireless sensor network using hybrid epidermis and DAIPaS approach. In: 2016 International Conference on Inventive Computation Technologies (ICICT) (2016)

  12. Dhurandher, S.K., Misra, S., Mittal, H. et al.: Using ant-based agents for congestion control in ad-hoc wireless sensor networks. Clust. Comput. 14, 41–53 (2011). https://doi.org/10.1007/s10586-009-0090-2

  13. Misra, S., Tiwari, V., Obaidat, M.: Lacas: learning automata-based congestion avoidance scheme for healthcare wireless sensor networks. IEEE J. Sel. Areas Commun. 27(4), 466–479 (2009)

    Article  Google Scholar 

  14. Yin, X., Zhou, X., Huang, R., Fang, Y., Li, S.: A fairness-aware congestion control scheme in wireless sensor networks. IEEE Trans. Vehicular Technol. 58(9), 5225–5234 (2009)

    Article  Google Scholar 

  15. Ren, F., He, T., Das, S., Lin, C.: Traffic-aware dynamic routing to alleviate congestion in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 22(9), 1585–1599 (2011)

    Article  Google Scholar 

  16. Sergiou, C., Vassiliou, V., Paphitis, A.: Hierarchical Tree Alternative Path (HTAP) algorithm for congestion control in wireless sensor networks. Ad Hoc Netw. 11(1), 257–272 (2013)

    Article  Google Scholar 

  17. Uthra, R., Kasmir Raja, S., Jeyasekar, A., Lattanze, A.: A probabilistic approach for predictive congestion control in wireless sensor networks. J. Zhejiang Univ. Sci. C. 15(3), 187–199 (2014)

    Article  Google Scholar 

  18. Gholipour, M., Haghighat, A., Meybodi, M.: Hop-by-hop traffic-aware routing to congestion control in wireless sensor networks. EURASIP J. Wirel. Commun. Netw. 1, 15 (2015)

    Article  Google Scholar 

  19. Gholipour, M., Haghighat, A., Meybodi, M.: Hop-by-Hop Congestion Avoidance in wireless sensor networks based on genetic support vector machine. Neurocomputing 223, 63–76 (2017)

    Article  Google Scholar 

  20. Kafi, M., Ben-Othman, J., Ouadjaout, A., Bagaa, M., Badache, N.: REFIACC: Reliable, efficient, fair and interference-aware congestion control protocol for wireless sensor networks. Comput. Commun. 101, 1–11 (2017)

    Article  Google Scholar 

  21. Chen, W., Niu, Y., Zou, Y.: Congestion control and energy-balanced scheme based on the hierarchy for WSNs. IET Wirel. Sensor Systems 7(1), 1–8 (2017)

    Article  Google Scholar 

  22. Nikokheslat, H., Ghaffari, A.: Protocol for controlling congestion in wireless sensor networks. Wirel. Pers. Commun. 95(3), 3233–3251 (2017)

    Article  Google Scholar 

  23. Chen, W., Guan, Q., Jiang, S., Guan, Q., Huang, T.: Joint QoS provisioning and congestion control for multi-hop wireless networks. EURASIP J. Wirel. Commun. Netw. 1, 19 (2016)

    Article  Google Scholar 

  24. Ding, W., Tang, L., Ji, S.: Optimizing routing based on congestion control for wireless sensor networks. Wirel. Netw. 22(3), 915–925 (2015)

    Article  Google Scholar 

  25. Raman, C.J., James, V.: Fuzzy based congestion control for backpressure routing algorithm in wireless sensor networks. Res. J. Appl. Sci. Eng. Technol. 11(11), 1179–1189 (2015)

    Article  Google Scholar 

  26. Chen, K., Muhlethaler, P.: A scheduling algorithm for tasks described by time value function. Real-Time Syst. 10(3), 293–312 (1996)

    Article  Google Scholar 

  27. Vijayakumar, K., Arun, C.: Continuous security assessment of cloud based applications using distributed hashing algorithm in SDLC. Clust. Comput. (2017). https://doi.org/10.1007/s10586-017-1176-x

  28. Vijayakumar, K., Arun, C.: Automated risk identification using NLP in cloud based development environments. J. Ambient Intell. Humaniz. Comput. (2017). https://doi.org/10.1007/s12652-017-0503-7

  29. Varatharajan, R., Manogaran, G., Priyan, M.K., Sundarasekar, R.: Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm. Clust. Comput. (2017). https://doi.org/10.1007/s10586-017-0977-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Raman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raman, C.J., James, V. FCC: Fast congestion control scheme for wireless sensor networks using hybrid optimal routing algorithm. Cluster Comput 22 (Suppl 5), 12701–12711 (2019). https://doi.org/10.1007/s10586-018-1744-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-1744-8

Keywords