Skip to main content

Advertisement

Log in

Research of manipulator trajectory tracking based on adaptive robust iterative learning control

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The manipulator control system is a dynamic system with the stronger nonlinear coupling feature and the higher position repetitive precision. In order to solve the problems of quickly load changes, many random disturbances, big measurement error and difficult dynamic modeling in the manipulator system, we designed a PD adaptive robust iterative learning controller, established the two degrees of freedom manipulator dynamics equation and used the Lyapunov function to analyze the stability and convergence of the system. MATLAB simulation of manipulator trajectory tracking shows that the control method can effectively inhibit various disturbances which cause by parameter variations, nonlinear mechanical and non-models dynamic characteristics. So the proposed method can make the system achieve good performance and verify the effectiveness of the algorithm, and the efficiency increases by 8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Arimoto, S., Sekimoto, M., Kawamura S.: Iterative learning of specified motions in task-space for redundant multi-joint hand-arm robots. In: IEEE International Conference on Robotics and Automation. IEEE, 2867–2873 (2007)

  2. Arimoto, S., Sekimoto, M., Tahara K.: Iterative learning without reinforcement or reward for multijoint movements: a revisit of Bernstein's DOF problem on dexterity. J. Robot. 2010, 217867 (2010)

    Google Scholar 

  3. Li, Y., Yuan, X., Yi, W.: Improved time invariant system PD type iterative learning control algorithm. Comput. Eng. Des. 44(31), 75–77 (2008)

    Google Scholar 

  4. Sun, H., Hou, Z., Li, D.: Coordinated iterative learning control schemes for train trajectory tracking with overspeed protection. IEEE Trans. Autom. Sci. Eng. 10(2), 323–333 (2013)

    Article  Google Scholar 

  5. Zhang, L., Liu, S.: Basis function based adaptive iterative learning control for flexible manipulator. In: Control and Automation Conference. IEEE, pp. 828–833 (2015)

  6. Sun, H., Alleyne, A.G.: A computationally efficient norm optimal iterative learning control approach for LTV systems. J. Automatica. 50(1), 141–148 (2014)

    Article  MathSciNet  Google Scholar 

  7. Zhang, L., Chen, W., Liu, J., et al.: A robust adaptive iterative learning control for trajectory tracking of permanent-magnet spherical actuator. J. IEEE. Trans. Ind. Electron. 63(1), 291–301 (2015)

    Article  Google Scholar 

  8. Hsiao, T.: Iterative learning control for trajectory tracking of robot manipulators. Int. J. Autom. Smart Technol. 7(3), 133–139 (2017)

    Article  Google Scholar 

  9. Jia, S., Jiang, Y., Li, T., et al.: Learning-based optimal desired compensation adaptive robust control for a flexure-based micro-motion manipulator. Appl. Sci. 7(4), 406 (2017)

    Article  Google Scholar 

  10. Jiang, J., Pan, L., Dai, Y., et al.: Research on manipulator trajectory tracking with model approximation RBF neural network adaptive control. In: Control and Decision Conference. IEEE, 573–576 (2017)

  11. Wang, D., Mu, C.: Adaptive-critic-based robust trajectory tracking of uncertain dynamics and its application to a spring-mass-damper system. IEEE Trans. Ind. Electron. 99, 1–10 (2017)

    Google Scholar 

  12. Mustafa, A., Dhar, N.K., Agrawal, P., et al.: Adaptive backstepping sliding mode control based on nonlinear disturbance observer for trajectory tracking of robotic manipulator. In: International Conference on Control and Robotics Engineering. IEEE, pp. 29–34 (2017)

  13. Razmjou, E.G., Sani, S.K.H., Sadati, J.: Robust adaptive sliding mode control combination with iterative learning technique to output tracking of fractional-order systems. Trans. Inst. Measurement Control 3, 014233121769133 (2017)

    Google Scholar 

  14. Wei, J., Hu, Y.A., Sun, M.: An exploration on adaptive iterative learning control for a class of commensurate high-order uncertain nonlinear fractional order systems. IEEE/CAA J. Autom. Sin. 99, 1–10 (2017)

    Google Scholar 

  15. Ding, L., Xia, K., Gao, H., et al.: Robust adaptive control of door opening by a mobile rescue manipulator based on unknown-force-related constraints estimation. Robotica 36(1), 119–140 (2017)

    Article  Google Scholar 

  16. Wang, H., Wang, Y.: Rapid ILC control of manipulator trajectory tracking with initial error. Syst. Eng. Theory Pract. 31, 165–171 (2011)

    Google Scholar 

  17. Zhang, L., Chen, W., Liu, J., Wen, C.: A robust adaptive iterative learning control for trajectory tracking of permanent magnet spherical actuator. IEEE Trans. Ind. Electron. 1, 1–1 (2015)

    Google Scholar 

  18. Zhang, L., Liu, S.: Basis function based adaptive iterative learning control for flexible manipulator. In: World Congress on Intelligent Control & Automation, pp. 828–833 (2015)

  19. Li, J., Yang, X.: Robust adaptive sliding mode iterative learning control based on neural network. J. Xi’an Electron. Sci. Univ. 29(3), 382–386 (2002)

    Google Scholar 

  20. He, F.: Iterative learning in industrial manipulator adaptive control. J. Mach. Des. 8, 49–52 (2010)

    Google Scholar 

  21. Na, W.: The Algorithm Research and Application in the Arm of Iterative Learning Control. Yanshan University, Qinhuangdao (2013)

    Google Scholar 

  22. Jia, B., Liu, S., Liu, Y.: Visual trajectory tracking of industrial manipulator with iterative learning control. Ind. Robot Int. J. 42(1), 54–63 (2015)

    Article  Google Scholar 

  23. Delchev, K.: Iterative learning control for robotic manipulators: a bounded-error algorithm. Int. J. Adapt. Control Signal Process. 28(12), 1454–1473 (2014)

    Article  MathSciNet  Google Scholar 

  24. Zhang, R., Hou, Z., Chi, R.H., et al.: Adaptive iterative learning control for nonlinearly parameterised systems with unknown time-varying delays and input saturations. Int. J. Control 88(6), 1133–1141 (2015)

    Article  MathSciNet  Google Scholar 

  25. Zhao, Y.M., Lin, Y., Xi, F., et al.: Calibration-based iterative learning control for path tracking of industrial robots. IEEE Trans. Ind. Electron. 62(5), 2921–2929 (2015)

    Article  Google Scholar 

  26. Xiao, T.-F., Li, X.-D., Ho, J.K.L.: An adaptive discrete-time ILC strategy using fuzzy systems for iteration-varying reference trajectory tracking. Int. J. Control Autom. Syst. 13(1), 222–230 (2015)

    Article  Google Scholar 

  27. Ersal, T., Brudnak, M., Salvi, A., et al.: An iterative learning control approach to improving fidelity in internet-distributed hardware-in-the-loop simulation. J. Dyn. Syst. Meas. Control 136(6), 236–242 (2014)

    Article  Google Scholar 

  28. Chen, H., Xing, G., Sun, H., et al.: Indirect iterative learning control for robot manipulator with non-Gaussian disturbances. IET Control Theory Appl. 7(17), 2090–2102 (2013)

    Article  MathSciNet  Google Scholar 

  29. Wang, S.-K., Wang, J.-Z., Zhao, J.: Application of PD-type iterative learning control in hydraulically driven 6-DOF parallel platform. Trans. Inst. Meas. Control 35(5), 683–691 (2013)

    Article  Google Scholar 

  30. Bouakrif, Farah, Boukhetala, Djamel, Boudjema, Fares: Velocity observer-based iterative learning control for robot manipulators. Int. J. Syst. Sci. 44(2), 214–222 (2013)

    Article  MathSciNet  Google Scholar 

  31. Jagatheesa Perumal, S.K., Natarajan, S.K.: Investigation of adaptive control of robot manipulators with uncertain features for trajectory tracking employing HIL simulation technique. Turkish J. Electr. Eng. Comput. Sci. 25(3), 2513–2521 (2017)

    Article  Google Scholar 

  32. Krishan, G., Singh, V.R.: SVM-SMC based control technique for precise trajectory tracking of a five bar linkage manipulator. In: IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems. IEEE, pp. 1–6 (2017)

  33. Jin, X.: Iterative learning control for non-repetitive trajectory tracking of robot manipulators with joint position constraints and actuator faults. Int. J. Adapt. Control Signal Process. 31, 859–875 (2016)

    Article  MathSciNet  Google Scholar 

  34. Mu, X., Yang, Z.: Containment control of discrete-time general linear multi-agent systems under dynamic digraph based on trajectory analysis. Neurocomputing 171, 1655–1660 (2016)

    Article  Google Scholar 

  35. Urrea, C., Kern, J.: Trajectory tracking control of a real redundant manipulator of the SCARA type. J. Electr. Eng. Technol. 11(1), 215–226 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the youth backbone teachers training program of Henan colleges and universities under Grant No. 2016ggjs-287, and the project of science and technology of Henan province under Grant No. 172102210124.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Qiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Hairong, D. & Qiong, W. Research of manipulator trajectory tracking based on adaptive robust iterative learning control. Cluster Comput 22 (Suppl 2), 3079–3086 (2019). https://doi.org/10.1007/s10586-018-1919-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-1919-3

Keywords