Skip to main content
Log in

Interference management based on power control and MU-MIMO

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Improvement of spectrum efficiency is a valuable research topic in mobile communication system, which impact cell edge user experience especially. According to current research results, three methods to improve inter-cell spectrum efficiency base on inter-cell interference management, including inter-cell interference randomization, inter-cell interference cancellation and inter-cell interference co-ordination. In this paper, one combinatorial method based on uplink power control and SINR prediction with non-ideal MU-MIMO CSI feedback is proposed for optimal management of inter-cell interference co-ordination. The simulation results show that this method performs very well in complex inter-cell interference scenario, and the average spectrum efficiency is improved more than 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andrews, J.G., et al.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)

    Article  MathSciNet  Google Scholar 

  2. Ghosh, A.: The 5G mmWave radio revolution. Microw. J. 59(9), 22–36 (2016)

    Google Scholar 

  3. Ghosh, A., et al.: Millimeter-wave enhanced local area systems: a high-data-rate approach for future wireless networks. IEEE J. Sel. Areas Commun. 32(6), 1152–1163 (2014)

    Article  Google Scholar 

  4. Björnson, E., Larsson, E.G., Marzetta, T.L.: Massive MIMO: ten myths and one critical question. IEEE Commun. Mag. 54(2), 114–123 (2016)

    Article  Google Scholar 

  5. Du, J., Valenzuela, R.A.: How much spectrum is too much in millimeter wave wireless access. IEEE J. Sel. Areas Commun. 35(7), 1444–1458 (2017)

    Article  Google Scholar 

  6. Rangan, S., Rappaport, T.S., Erkip, E.: Millimeter-wave cellular wireless networks: potentials and challenges. Proc. IEEE 102(3), 366–385 (2014)

    Article  Google Scholar 

  7. Heath Jr., R.W., González-Prelcic, N., Rangan, S., Roh, W., Sayeed, A.M.: An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J. Sel. Topics Signal Process. 10(3), 436–453 (2016)

    Article  Google Scholar 

  8. Song, L., Han, Z., Zhang, Z., Jiao, B.: Non-cooperative feedback-rate control game for channel state information in wireless networks. IEEE J. Select. Areas Commun. 30(1), 188–197 (2012)

    Article  Google Scholar 

  9. Adhikary, A., et al.: Joint spatial division and multiplexing for mm-Wave channels. IEEE J. Sel. Areas Commun. 35(7), 1239–1255 (2014)

    Article  Google Scholar 

  10. Andrews, J.G., Bai, T., Kulkarni, M.N., Alkhateeb, A., Gupta, A.K., Heath Jr., R.W.: Modeling and analyzing millimeter wave cellular systems. IEEE Trans. Commun. 65(1), 403–430 (2017)

    Google Scholar 

  11. Gao, Z., Dai, L., Mi, D., Wang, Z., Imran, M.A., Shaki, M.Z.: MmWave massive-MIMO-based wireless backhaul for the 5G ultra-dense network. IEEE Wireless Commun. 22(5), 13–21 (2015)

    Article  Google Scholar 

  12. Pi, Z., Choi, J., Heath Jr., R.W.: Millimeter-wave gigabit broad band revolution toward 5G: fixed access and backhaul. IEEE Commun. Mag. 54(4), 138–144 (2016)

    Article  Google Scholar 

  13. Zhang, Y.-P., Wang, P., Goldsmith, A.: Rainfall effect on the performance of millimeter-wave MIMO systems. IEEE Trans. Wireless Commun. 14(9), 4857–4866 (2015)

    Article  Google Scholar 

  14. Sun, C., Gao, X.Q., Jin, S., Matthaiou, M., Ding, Z., Xiao, C.: Beam division multiple access transmission for massive MIMO communications. IEEE Trans. Commun. 63(6), 2170–2184 (2017)

    Article  Google Scholar 

  15. Björnson, E., Matthaiou, M., Debbah, M.: Massive MIMO with non-ideal arbitrary arrays: hardware scaling laws and circuit-aware design. IEEE Trans. Wireless Commun. 14(8), 4353–4368 (2015)

    Article  Google Scholar 

  16. Roivainen, A., Dias, C.F., Tervo, N., Hovinen, V., Sonkki, M., Latva-Aho, M.: Geometry-based stochastic channel model for two-story lobby environment at 10 GHz. IEEE Trans. Antennas Propag. 64(9), 3990–4003 (2016)

    Article  MathSciNet  Google Scholar 

  17. Zhang, C., Huang, Y., Jing, Y., Jin, S., Yang, L.: Sum-rate analysis for massive MIMO downlink with joint statistical beamforming and user scheduling. IEEE Trans. Wireless Commun. 16(4), 2181–2194 (2017)

    Article  Google Scholar 

  18. Huang, J., Wang, C.-X., Feng, R., Sun, J., Zhang, W., Yang, Y.: Multi-frequency mmWave massive MIMO channel measurements and characterization for 5G wireless communication systems. IEEE J. Sel. Areas Commun. 35(7), 1591–1605 (2017)

    Article  Google Scholar 

  19. MacCartney, G.R., Rappaport, T.S.: Rural macrocell path loss models for millimeter wave wireless communications. IEEE J. Sel. Areas Commun. 35(7), 1663–1677 (2017)

    Article  Google Scholar 

  20. Ai, B., et al.: On indoor millimeter wave massive MIMO channels: measurement and simulation. IEEE J. Sel. Areas Commun. 35(7), 1678–1690 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This paper was supported by Guangdong IIOT(M-S) Engineering Technology Center (No.2015-1487) and Shenzhen IIOT engineering Laboratory (Shenzhen Polytech, No.2017-713).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., He, J. & Zou, B. Interference management based on power control and MU-MIMO. Cluster Comput 22 (Suppl 4), 8581–8588 (2019). https://doi.org/10.1007/s10586-018-1926-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-1926-4

Keywords

Navigation