Abstract
The conventional synthetic aperture radar (SAR) image registration focuses on designing diverse hand-crafted features and distance metrics. It is still challenging to obtain accurate feature correspondence when influenced by speckle noise and geometric distortion. This paper proposes local convolutional neural network (CNN) features based method to solve the keypoint matching problem, whose contributions are threefold. (1) a feature descriptor based on local convolutional features of image patches (LCFs-P) is deployed to extract more discriminative features than the conventional CNNs. (2) A new feature correspondence scheme based on metric learning is proposed to boost the feature matching performance. (3) A local geometric similarity method is employed to remove the mismatches of the tentative matches. The experimental results on the real SAR dataset and Middlebury dataset demonstrate that the proposed model outperforms the existing state-of-the-art methods in terms of matching accuracy and efficiency.









Similar content being viewed by others
References
Sjanic, Z., Gustafsson, F.: Simultaneous navigation and synthetic aperture radar focusing. IEEE Trans. Aerosp. Electron. Syst. 51(2), 1253–1266 (2015)
Jia, L., Li, M., Wu, Y., Zhang, P., Liu, G., Chen, H., An, L.: SAR image change detection based on iterative label-information composite kernel supervised by anisotropic texture. IEEE Trans. Geosci. Remote Sens. 53(7), 3960–3973 (2015)
Zhu, H., Ma, W., Hou, B., Jiao, L.: SAR image registration based on multifeature detection and arborescence network matching. IEEE Geosci. Remote Sens. Lett. 13(5), 706–710 (2016)
Brown, L.G.: A survey of image registration techniques. ACM Comput. Surv. (CSUR) 24(4), 325–376 (1992)
Fan, B., Huo, C., Pan, C., Kong, Q.: Registration of optical and SAR satellite images by exploring the spatial relationship of the improved SIFT. IEEE Geosci. Remote Sens. Lett. 10(4), 657–661 (2013)
Fan, J., Wu, Y., Wang, F., Zhang, P., Li, M.: New point matching algorithm using sparse representation of image patch feature for SAR image registration. IEEE Trans. Geosci. Remote Sens. 55(3), 1498–1510 (2017)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Schwind, P., Suri, S., Reinartz, P., Siebert, A.: Applicability of the SIFT operator to geometric SAR image registration. Int. J. Remote Sens. 31(8), 1959–1980 (2010)
Chen, T., Chen, L.: A union matching method for SAR images based on SIFT and edge strength. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(12), 4897–4906 (2014)
Wang, F., You, H., Fu, X.: Adapted anisotropic Gaussian SIFT matching strategy for SAR registration. IEEE Geosci. Remote Sens. Lett. 12(1), 160–164 (2015)
Wang, S., You, H., Fu, K.: BFSIFT: a novel method to find feature matches for SAR image registration. IEEE Geosci. Remote Sens. Lett. 9(4), 649–653 (2012)
Fan, J., Wu, Y., Wang, F., Zhang, Q., Liao, G., Li, M.: SAR image registration using phase congruency and nonlinear diffusion-based SIFT. IEEE Geosci. Remote Sens. Lett. 12(3), 562–566 (2015)
Dellinger, F., Delon, J., Gousseau, Y., Michel, J., Tupin, F.: SAR-SIFT: a SIFT-like algorithm for SAR images. IEEE Trans. Geosci. Remote Sens. 53(1), 453–466 (2015)
Harris, C., Stephens, M.: A combined corner and edge detector. Alvey Vis. Conf. 15(50), 10–5244 (1988)
Bentoutou, Y., Taleb, N., Kpalma, K., Ronsin, J.: An automatic image registration for applications in remote sensing. IEEE Trans. Geosci. Remote Sens. 43(9), 2127–2137 (2005)
Fan, J., Wu, Y., Li, M., Zhang, Q.: SAR image registration using multiscale image patch features with sparse representation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 10(4), 1483–1493 (2016)
Fischer, P., Dosovitskiy, A., Brox, T.: Descriptor matching with convolutional neural networks: a comparison to sift. arXiv preprint arXiv:1405.5769
Zagoruyko, S., Komodakis, N.: Learning to compare image patches via convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 4353–4361 (2015)
Han, X., Leung, T., Jia, Y., Sukthankar, R., Berg, A.C.: MatchNet: Unifying feature and metric learning for patch-based matching. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3279–3286 (2015)
Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., Moreno-Noguer, F.: Discriminative learning of deep convolutional feature point descriptors. In: IEEE International Conference on Computer Vision, pp. 118–126 (2016)
Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)
Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.J.: Distance metric learning, with application to clustering with side-information. In: International Conference on Neural Information Processing Systems. MIT Press, pp 521–528 (2002)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 726–740 (1981)
Torr, P.H.S., Murray, D.W.: The development and comparison of robust methods for estimating the fundamental matrix. Int. J. Comput. Vision 24(3), 271–300 (1997)
Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision 47(1–3), 7–42 (2002)
Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings, pp I-195–I-202. IEEE (2003)
Scharstein, D., Pal, C.: Learning conditional random fields for stereo. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1–8 (2007)
Hirschmuller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1–8 (2007)
Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nešić, N., Wang, X., Westling, P.: High-resolution stereo datasets with subpixel-accurate ground truth. In: German Conference on Pattern Recognition, pp 31–42 . Springer (2014)
Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)
Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)
Li, D., Zhou, H., Lam, K.M.: High-resolution face verification using pore-scale facial features. IEEE Trans. Image Process 24(8), 2317–2327 (2015)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)
Gonçalves, H., Gonçalves, J.A., Corte-Real, L.: Measures for an objective evaluation of the geometric correction process quality. IEEE Geosci. Remote Sens. Lett. 6(2), 292–296 (2009)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)
Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans. Image Process. 19(2), 533 (2010)
Zhang, B., Perina, A., Li, Z., Murino, V., Liu, J., Ji, R.: Bounding multiple Gaussians uncertainty with application to object tracking. Int. J. Comput. Vis. 118(3), 364–379 (2016)
Zhang, B., Yang, Y., Chen, C., Yang, L., Han, J., Shao, L.: Action recognition using 3D histograms of texture and a multi-class boosting classifier. IEEE Trans. Image Process. 26(10), 4648–4660 (2017)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Guo, Q., Xiao, J., Hu, X. et al. Local convolutional features and metric learning for SAR image registration. Cluster Comput 22 (Suppl 2), 3103–3114 (2019). https://doi.org/10.1007/s10586-018-1946-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-018-1946-0