Abstract
The main criteria to be kept in mind while designing any application using fuel cell is the Voltage Control under sudden load variations. As a standard practice the output voltage of a fuel cell is controlled and maintained to the reference by introducing Intelligent Controllers. This paper shows the performance analysis of various intelligent controllers that can track the output voltage of fuel cell. In this paper, the state space model of Proton Exchange Membrane Fuel cell is considered for analyzing various controllers. Additionally the transient response of the fuel cell is analyzed and compared for the different controllers. The performance of the controllers is evaluated by estimating the time response characteristics of the system and also by calculating the system errors.











Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
T-Raissi, A., Banerjee, A.: Current technology of fuel cell systems. In: Proceedings of the 32nd Intersociety on Energy Conversion Engineering Conference, IECEC-97, vol. 3, pp. 1953–1957 (1997)
Samrat Nandikesan, P., Mohanty, S., Shaneeth, M., Kamlakaran, K.P.: Control strategy for PEM fuel cell power plant. In: IEEE I International Conference on Power and Energy in NERIST (ICPEN), pp. 1–3. IEEE 978-1-4673-1669-9/12 (2012)
Mohamed Ali, E.A., Abhudhahir, A.: A survey of the relevance of control systems for PEM fuel cells. In: IEEE International Conference on Computer, Communication and Electrical Technology-ICCCET, pp. 322–326. ICCCET.978-1-4244-9394-4/11 (2011)
Karimi, M., Imanzadeh, M., Farhadi, P., Ghadimi, N.: Voltage control of PEMFC using a new controller based on reinforcement learning. Int. J. Inf. Electron. Eng. 2(5), 752–756 (2012). https://doi.org/10.7763/ijiee.2012.v2.200
Rezazadeh, A., Askarzadeh, A., Sedighizadeh, M.: Adaptive inverse control of proton exchange membrane fuel cell using RBF neural network. Int. J. Electrochem. Sci. 6, 3105–3117 (2011)
Mansour, A.M., Saad, N.H., Sattar, A.A.: Maximum power point tracking of ten parameter fuel cell model. J. Am. Sci. 8(8), 941–946 (2012)
Rezai, M., Mohseni, M.: A predictive control based on neural network for dynamic model of proton exchange membrane fuel cell. J. Fuel Cell Sci Technol 10(3), 035001 (2013)
Borujeni, M.S., Zarabadipour, H.: Fuel cell voltage control using neural network based on model predictive control. In: 2014 Iranian Conference on Intelligent Systems (ICIS) (2014). https://doi.org/10.1109/iraniancis.2014.6802609
Fan, L., Liu, Y.: Fuzzy logic based constant power control of a proton exchange membrane fuel cell. Przeglad Elektrotechniczny (Electrical Review), 72–75 (2012)
Cao, J.-Y., Cao, B.-G.: Design of fractional order controller based on particle swarm optimization. Int. J. Control Autom. Syst. 4(6), 775–781 (2006)
Chen, Y.Q., Petras, I., Xue, D.: Fractional order control-a tutorial. In: 2009 American Control Conference AACC, pp. 1397–1411 (2009). WeC02.1. 978-1-4244-4524-0/09
Barbosa, R.S., Jesus, I.S.: Comparitive study of fuzzy integer and fractional PID controller. In: 39th Annual Conference of the IEEE Industrial Electronics Society, IECON 2013, pp. 3392–3397 (2013). https://doi.org/10.1109/iecon.2013.6699673
Singhal, R., Padhee, S., Kaur, G.: Design of fractional order PID controller for speed control of DC motor. Int. J. Sci. Res. Publ. 2(6), 1–8 (2012)
Zhang, Y., Li, J.: Fractional order PID controller tuning based on genetic algorithm. In: 2011 IEEE International Conference on Business Management and Electronic Information, pp. 764–767 (2011). https://doi.org/10.1109/icbmei.2011.5920371
Bettayeb, M., Rachid, M.: IMC-PID fractional order filter controllers design for integer order systems. In: ISA Transactions Elsevier, pp. 1620–1628 (2014). http://dx.doi.org/10.1016/j.isatra.2014.05.007
Farhadi, P., Sojoudi, T.: PEMFC voltage control using PSO-tuned PID controller. In: Proceedings of IEEE NW Russia Young Researches in Electrical and Electronics Engineering Conference, pp. 32–35 (2014). https://doi.org/10.1109/elconrusnw.2014.6839194
Shamel, A., Ghadimi, N.: Hybrid PSTOTVAC/BFA technique for tuning of robust PID controller of fuel cell voltage. Indian J. Chem. Technol. 23, 171–178 (2016)
Khoeiniha, M., Zarabadipuour, H.: Optimal control design for proton exchange membrane fuel cell via genetic algorithm. Int. J. Electrochem. Sci. 7, 6302–6312 (2012)
Houshyar, A., Mohammadi, M., Rasouli Nezhad, R., Ghadimi, N.: Designing PID controller for fuel cell voltage using evolutionary programming algorithms. J. Basic Appl. Sci. Res. 2(2), 1981–1987 (2012)
Sachin Puranik, V., Keyhani, Ali, Khorrami, Farshad: State space modelling of proton exchange membrane fuel cell. IEEE Trans. Energy Convers. 25(3), 804–813 (2010). https://doi.org/10.1109/TEC.2010.2047725
Bilbao, M.N., Del Ser, J., Geem, Z.W., Gil-Lopez, S., Landa-Torres, I., Manjarres, D., Salcedo-Sanz, S.: A Survey on the Applications of the harmony search algorithm. Eng. Appl. Artif. Intell. 26(8), 1818–1831 (2013). https://doi.org/10.1016/j.engappai.2013.05.008
Kassim, N., Sulaiman, S.I., Musirin, I.: Harmony search based optimization of artificial neural network for predicting AC power from a photovoltaic system. In: IEEE 8th International Power Engineering and Optimization Conference (PEOCO2014). https://doi.org/10.1109/peoco.2014.6814481
Askarzadeh, A., Rezazadeh, A.: An innovative global harmony search algorithm for parameter identification of a PEM fuel cell model. IEEE Trans. Ind. Electron. 59(9), 3473–3480 (2011). https://doi.org/10.1109/tie.2011.2172173
Vinu, R., Paul, V.: Robust optimized artificial neural network based PEM fuelcell voltage tracking. Adv. Intell. Syst. Comput. 424, 79–91 (2015). https://doi.org/10.1007/978-3-319-28031-8
Vinu, R., Paul, V.: Harmony search optimized fractional order PID controller for voltage control of fuel cell. Asian J. Res. Soc. Sci. Hum. 6(10), 815–829 (2016). https://doi.org/10.5958/2249-7315.2016.01055.8
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Vinu, R., Paul, V. Performance analysis of artificial intelligent controllers in PEM fuel cell voltage tracking. Cluster Comput 22 (Suppl 2), 4443–4455 (2019). https://doi.org/10.1007/s10586-018-1992-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-018-1992-7