Abstract
Object detection and recognition technology plays an important role in video advertising. Based on the deep learning algorithm, this paper first builds a real-time object detection model (Yes-Net) based on image global information which combines the advantages of CNN and RNN algorithm together and has achieved significant effects compared with other object detection algorithms. We used this model to build an accurate video advertising framework and applied the framework in an IPTV platform of a telecommunication operator to collect comparative data. We first performed image detection and recognition in video playing, and then associated the recognition results with the ads database to conduct real-time classification and accurate ads delivery. It proves that compared with traditional advertisement delivery method, this new framework dramatically improves the click-through rate, and achieves better results.










Similar content being viewed by others
References
Affonso, C., Rossi, A., Vieira, F., de Carvalho, A.: Deep learning for biological image classification. Expert Syst. Appl 85, 114–122 (2017)
Bao, L., Le, D.-N., Nguyen, G.N., Bhateja, V., Satapathy, S.C.: Optimizing feature selection in video-based recognition using Max-Min Ant System for the online video contextual advertisement user-oriented system. J. Comput. Sci. 21, 361–370 (2017)
Bourbakis, N., Esposito, A., Kavraki, D.: Extracting and associating meta-features for understanding people’s emotional behaviour: face and speech. Cognit. Comput. 3(3), 436–448 (2011)
Castaldo, F., Palmieri, F.A., Regazzoni, C.S.: Bayesian analysis of behaviors and interactions for situation awareness in transportation systems. IEEE Trans. Intell. Transp. Syst. 17(2), 313–322 (2016)
Chan, T.-H., Jai, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: PCANet: a simple deep learning baseline for image classification? IEEE Trans. Image Process. 24(12), 5017–5032 (2015)
Chen, X.Y., Xiang, S.M., Liu, C.L., Pan, C.H.: Vehicle detection in satellite images by hybrid deep convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 11(10), 1797–1801 (2014)
Dong, C., He, K.M., Tang, X.O.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)
Duffner, S., Garcia, C.: Visual focus of attention estimation with unsupervised incremental learning. IEEE Trans. Circuits Syst. Video Technol. 26(12), 2264–2272 (2016)
Eidinger, E., Enbar, R., Hassner, T.: Age and gender estimation of unfiltered faces. IEEE Trans. Inf. Forensics Secur. 9(12), 2170–2179 (2014)
Farabet, C., Couprie, C., Najman, L., Lecun, Y.: Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1915 (2013)
Geurin-Eagleman, A.N., Burch, L.M.: Communicating via photographs: a gendered analysis of olympic athletes’ visual self-presentation on instagram. Sport Manag. Rev. 19(2), 133–145 (2016)
Girshick, R., Donahue, J., Darrell, T.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
Girshick, R., Iandola, F., Darrell, T., Malik, J.: Deformable part models are convolutional neural networks. In: 2015 IEEE Conference on CVPR, pp. 437–446 (2015)
Girshick, R.: Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)
Greene, M.R., Baldassano, C., Esteva, A., Beck, D.M., Li, F.F., Gauthier, I.: Visual scenes are categorized by function. J. Exp. Psychol. 145(1), 82–94 (2016)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–80 (1997)
Hou, S.J., Chen, L., Tao, D.C., Zhou, S.B., Liu, W.J., Zheng, Y.J.: Multi-layer multi-view topic model for classifying advertising video. Pattern Recognit. 68, 66–81 (2017)
Hsieh, L.C., Wu, G.L., Hsu, Y.M., Hsu, W.: Online image search result grouping with MapReduce-based image clustering and graph construction for large-scale photos. J. Vis. Commun. Image R. 25(2), 384–395 (2014)
Huang, F.L., Zhang, S.C., Zhang, J.L., Yu, G.: Multimodal learning for topic sentiment analysis in microblogging. Neurocomputing 253, 144–153 (2017)
Ji, S.W., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2013)
Jiang, Y., Wang, Y.J.: Psychologically inspired visual information storage and retrieval modeling for multiclass image classification. Neurocomputing 259, 194–200 (2017)
Jiji, G., Durai Raj, P.: Content-based image retrieval in dermatology using intelligent technique. IET Image Process. 9(4), 306–317 (2015)
Kaneko, T., Yanai, K.: Event photo mining from Twitter using keyword bursts and image clustering. Neurocomputing 172, 143–158 (2016)
Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)
Lee, H., Grosse, R., Ranganath, R., Ng, A.: Unsupervised learning of hierarchical representations with convolutional deep belief networks. Commun. ACM 54(10), 95–103 (2011)
Li, K., Zou, C.Q., Bu, S.H., Liang, Y., Zhang, J., Gong, M.L.: Multi-modal feature fusion for geographic image annotation. Pattern Recognit. 73, 1–14 (2018)
Li, R.F., Feng, F.X., Ahmad, I., Wang, X.J.: Retrieving real world clothing images via multi-weight deep convolutional neural networks. Cluster Comput. (2017). https://doi.org/10.1007/s10586-017-1052-8
Muhammad, A., Tamleek, A.T., Shakirullah S., Muhammad, A., Muhammad, S.: DeepSIC: a deep model for satellite image classification. Cluster Comput. (2017). https://doi.org/10.1007/s10586-017-1010-5
Murugappan, V., Sabeenian, R.S.: Texture based medical image classification by using multi-scale gabor rotation-invariant local binary pattern (MGRLBP). Clust. Comput. 1–14(2017)
Panteras, G., Wise, S., Lu, X., Croitoru, A., Crooks, A., Stefanidis, A.: Triangulating social multimedia content for event localization using Flickr and Twitter. Trans. GIS 19(5), 694–715 (2015)
Qawaqneh, Z., Mallouh, A.A., Barkana, B.D.: Age and gender classification from speech and face images by jointly fine-tuned deep neural networks. Expert Syst. Appl. 85, 76–86 (2017)
Qayyum, A., Anwar, S., Awais, M., Majid, M.: Medical image retrieval using deep convolutional neural network. Neurocomputing 266, 8–20 (2017)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on CVPR, pp. 779–788 (2016)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A., Li, F.F.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
Shin, H.-C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imag. 35(5), 1285–1298 (2016)
Shin, H.-C., Orton, M.R., Collins, D.J., Doran, S.J., Leach, M.O.: Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1930–1943 (2013)
Tang, J.X., Deng, C.W., Huang, G.B., Zhao, B.J.: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Trans. Geosci. Remote Sens. 53(3), 1174–1185 (2015)
Troya-Galvis, A., Gançarski, P., Berti-Équille, L.: Remote sensing image analysis by aggregation of segmentation-classification collaborative agents. Pattern Recognit. 73, 259–274 (2018)
Uyar, A., Karapinar, R.: Investigating the precision of Web image search engines for popular and less popular entities. J. Inf. Sci. 43(3), 378–392 (2017)
Wu, L., Wang, Y., Gao, J.B., Li, X.: Deep adaptive feature embedding with local sample distributions for person re-identification. Pattern Recognit. 73, 275–288 (2018)
Yann, L.C., Yoshua, B., Geoffrey, H.: Deep learning. Nature 521(7553), 436 (2015)
Zhang, H.J., Wang, S., Cao, X., Yue, H., Wang, K.: Learning to link human objects in videos and advertisements with clothes retrieval. In: 2016 International Joint Conference on Neural Networks. pp. 5006–5013 (2016)
Zhang, W.L., Li, R.J., Deng, H.T., Wang, L., Lin, W.L., Ji, S.W., Shen, D.G.: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108, 214–224 (2015)
Zhang, H.J., Cao, X., Ho, J.K.L., Chow, S.: Object-level video advertising: an optimization framework. IEEE Trans. Ind. Inform. 13(2), 520–531 (2017)
Zhang, J.M., Ma, S.G., Sameki, M., Sclaroff, S., Betke, M., Lin, Z., Shen, X.H., Price, B., Měch, R.: Salient object subitizing. Int. J. Comput. Vis. 124(2), 169–186 (2017)
Zhou, X.Y., Gong, W., Fu, W.L., Du, F.T.: Application of deep learning in object detection. In: 2017 IEEE/ACIS 16th International Conference on Computer and Information Science. pp. 631–634 (2017)
Zhuo, T.: Face recognition from a single image per person using deep architecture neural networks. Clust. Comput. 19(1), 73–77 (2016)
Acknowledgements
Thanks for the great support from Chengdu Handsight Information Technology Co., Ltd. The company offers all the empirical data, as well as the using authorization of IPTV supporting system. Our work is supported by Key support projects of Sichuan science and Technology Department (No.18ZDYF1707), Key support projects of Sichuan Federation of Social Science Associations (No. SC16XK033) and Key support projects of Sichuan Tourism University (No. SCTUJ1709).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Luo, C., Peng, Y., Zhu, T. et al. An optimization framework of video advertising: using deep learning algorithm based on global image information. Cluster Comput 22 (Suppl 4), 8939–8951 (2019). https://doi.org/10.1007/s10586-018-2024-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-018-2024-3