Abstract
AI-based network function virtualization (NFV) is an emerging technique that separates network control functionality from dedicated hardware middleboxes and is virtualized to reduce capital and operational costs. With the advances of NFV and AI-based software-defined networks, dynamic network service demands can be flexibly and effectively accomplished by connecting multiple virtual network functions (VNFs) running on virtual machines. However, such promising technology also introduces several new research challenges. Due to resource constraints, service providers may have to deploy different service function chains (SFCs) to share the same physical resources. Such sharing inevitably forces the scheduling of the SFCs and resources, which consumes computational time and introduces problems associated with reducing the response delay. In this paper, we address this challenge by developing two dynamic priority methods for queuing AI-based VNFs/services to improve the user experience. We account for both transmission and processing delays in our proposed algorithms and achieve a new processing order (scheduler) for VNFs to minimize the overall scheduling delay. The simulation results indicate that the proposed scheme can promote the performance of AI-based VNFs/services to meet strict latency requirements.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Li, J., Zhang, Y., Chen, X., et al.: Secure attribute-based data sharing for resource-limited users in cloud computing. Comput. Secur. 72, 1–12 (2018)
Li, P., Li, J., Huang, Z., et al.: Privacy-preserving outsourced classification in cloud computing. Clust. Comput. (2017). https://doi.org/10.1007/s10586-017-0849-9
Li, J., Li, J., Chen, X., et al.: Identity-based encryption with outsourced revocation in cloud computing. IEEE Trans. Comput. 64(2), 425–437 (2015)
Li, P., Li, J., Huang, Z., et al.: Multi-key privacy-preserving deep learning in cloud computing. Future Gener. Comput. Syst. 74, 76–85 (2017)
Li, J., Liu, Z., Chen, X., et al.: L-EncDB: a lightweight framework for privacy-preserving data queries in cloud computing. Knowl. Based Syst. 79, 18–26 (2015)
Zhang, Y., Chen, X., Li, J., et al.: Ensuring attribute privacy protection and fast decryption for outsourced data security in mobile cloud computing. Inf. Sci. 379, 42–61 (2017)
Li, J., Li, J., Xie, D., et al.: Secure auditing and deduplicating data in cloud. IEEE Trans. Comput. 65(8), 2386–2396 (2016)
Sun, G., Liao, D., Zhao, D., et al.: Live migration for multiple correlated virtual machines in cloud-based data centers. IEEE Trans. Serv. Comput. 1–14 (2016)
Sun, G., Liao, D., Bu, S., et al.: The efficient framework and algorithm for provisioning evolving VDC in federated data centers. Future Gener. Comput. Syst. 73, 79–89 (2017)
Sun, G., Liao, D., Anand, V., et al.: A new technique for efficient live migration of multiple virtual machines. Future Gener. Comput. Syst. 55, 74–86 (2016)
Sun, G., Anand, V., Liao, D., et al.: Power-efficient provisioning for online virtual network requests in cloud-based data centers. IEEE Syst. J. 9(2), 427–441 (2015)
Sun, G., Yu, H., Anand, V., et al.: A cost efficient framework and algorithm for embedding dynamic virtual network requests. Future Gener. Comput. Syst. 29(5), 1265–1277 (2013)
Sun, G., Yu, H., Anand, V., et al.: Optimal provisioning for virtual network request in cloud-based data centers. Photonic Netw. Commun. 24(2), 118–131 (2012)
Sun, G., Yu, H., Li, L., et al.: Exploring online virtual networks mapping with stochastic bandwidth demand in multi-data center. Photonic Netw. Commun. 23(2), 109–122 (2012)
Sun, G., Liao, D., Zhao, D., et al.: Towards provisioning hybrid virtual networks in federated cloud data centers. Future Gener. Comput. Syst. (2017). https://doi.org/10.1016/j.future.2017.09.065
Bakkes, S., Spronck, P., Herik, J.: Rapid and reliable adaptation of video game AI. IEEE Trans. Comput. Intell. AI Games 1(2), 93–104 (2009)
Pührer, J.: Towards a simulation-based programming paradigm for AI applications. Comput. Sci. 1–7 (2015)
Dietterich, T., Horvitz, E.: Viewpoint rise of concerns about AI: reflections and directions. Commun. ACM 58(10), 38–40 (2015)
Bartoli, G., Marabissi, D., Pucc, R., et al.: AI based network and radio resource management in 5G HetNets. J. Signal Process. Syst. 89(1), 133–143 (2017)
Singhal, S., Daniel, A.: Cluster head selection protocol under node degree, competence level and goodness factor for mobile ad hoc network using AI technique. In: Fourth International Conference on Advanced Computing and Communication Technologies, pp. 415–420, 2014
Jukan, A., Chamania, M.: Evolution Towards Smart Optical Networking: Where Artificial Intelligence (AI) Meets the World of Photonics, pp. 1–4, 2017
Alemdar, H., Caldwell, N., Leroy, V., et al.: Ternary Neural Networks for Resource-Efficient AI Applications, pp. 1–9, 2017
Han, B., Gopalakrishnan, V., Ji, L., et al.: Network function virtualization: challenges and opportunities for innovations. IEEE Commun. Mag. 53(2), 90–97 (2015)
Haque, A., Chandra, S., Khan, L., et al.: Distributed adaptive importance sampling on graphical models using MapReduce. In: IEEE International Conference on Big Data, pp. 597–602, 2014
Liu, X., Wang, X., Matwin, S., et al.: Meta-learning for large scale machine learning with MapReduce. In: IEEE International Conference on Big Data, pp. 105–110, 2013
Mijumbi, R., Serrat, J., Gorricho, J.L., et al.: Network function virtualization: state-of-the-art and research challenges. IEEE Commun. Surv. Tutor. 18(1), 236–262 (2015)
ETSI GS NFV-PER 001 V1.1.1: Network Functions Virtualisation (NFV): NFV Performance and Portability Best Practices. http://www.etsi.org/deliver/etsi_gs/NFVPER/001_099/001/01.01.01_60/gs_nfv-per001v010101p.pdf
ETSI GS NFV-MAN 001 V1.1.1: Network Functions Virtualisation (NFV): Management and Orchestration. http://www.etsi.org/deliver/etsi_gs/NFVMAN/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
ETSI GS NFV-INF 004 V1.1.1: Network Functions Virtualisation (NFV): Infrastructure; Hypervisor Domain. http://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/004/01.01.01_60/gs_nfv-inf004v010101p.pdf
Qu, L., Assi, C., Shaban, K.: Delay-aware scheduling and resource optimization with network function virtualization. IEEE Trans. Commun. 64(9), 3746–3758 (2016)
Basta, A., Kellerer, W., Hoffmann, M., et al.: Applying NFV and SDN to LTE mobile core gateways, the functions placement problem. In: The 4th ACM Workshop on All Things Cellular: Operations, Applications and Challenges, pp. 33–38, 2014
Luizelli, M.C., Bays, L.R., Buriol, L.S., et al.: Piecing together the NFV provisioning puzzle: efficient placement and chaining of virtual network functions. In: IFIP/IEEE International Symposium on Integrated Network Management, pp. 98–106, 2015
Mechtri, M., Ghribi, C., Zeghlache, D.: A scalable algorithm for the placement of service function chains. IEEE Trans. Netw. Serv. Manag. (2016). https://doi.org/10.1109/TNSM.2016.2598068
Umeyama, S.: An Eigen decomposition approach to weighted graph matching problems. IEEE Trans. Pattern Anal. Mach. Intell. 10(5), 695–703 (1988)
Chi, P.W., Huang, Y.C., Lei, C.L.: Efficient NFV deployment in data center networks. In: IEEE International Conference on Communications, pp. 5290–5295, 2015
Moens, H., Turck, F.D.: VNF-P: a model for efficient placement of virtualized network functions. In: International Conference on Network and Service Management, pp. 418–423, 2014
Wang, L., Lu, Z., Wen, X., et al.: Joint optimization of service function chaining and resource allocation in network function virtualization. IEEE Access 4, 8084–8094 (2016)
Mehraghdam, S., Keller, M., Kerl, H.: Specifying and placing chains of virtual network functions. In: IEEE International Conference on Cloud Networking, pp. 7–13, 2014
Clayman, S., Maini, E., Galis, A., et al.: The dynamic placement of virtual network functions. In: IEEE Network Operations and Management Symposium (NOMS), pp. 1–9, 2014
Kim, S., Han, Y., Park, S.: An energy-aware service function chaining and reconfiguration algorithm in NFV. In: IEEE International Workshops on Foundations and Applications of Self Systems, pp. 54–59, 2016
Bruschi, R., Carrega, A., Davoli, F.: A game for energy-aware allocation of virtualized network functions. J. Electr. Comput. Eng. 2016(7), 1–10 (2016)
Xia, M., Shirazipour, M., Zhang, Y., et al.: Optical service chaining for network function virtualization. IEEE Commun. Mag. 53(4), 152–158 (2015)
Khoury, N.E., Ayoubi, S., Assi, C.: Energy-aware placement and scheduling of network traffic flows with deadlines on virtual network functions. In: IEEE International Conference on Cloud Networking (Cloudnet), pp. 89–94, 2016
Kim, S., Park, S., Kim, Y., et al.: VNF-EQ: dynamic placement of virtual network functions for energy efficiency and QoS guarantee in NFV. Clust. Comput. 20(3), 2107–2117 (2017)
Fan, J., Guan, C., Qiao, C., et al.: Guaranteeing Availability for Network Function Virtualization with Geographic Redundancy Deployment (2015). http://hdl.handle.net/10477/41826
Guo, T., Wang, N., Moessne, K., et al.: Shared backup network provision for virtual network embedding. IEEE Int. Conf. Commun. 41(4), 1–5 (2011)
Kanizo, Y., Rottenstreich, O., Segall, I., et al.: Optimizing virtual backup allocation for middleboxes. In: IEEE International Conference on Network Protocols, pp. 1–10, 2016
Kim, H., Yoon, S., Jeon, H., et al.: Service platform and monitoring architecture for network function virtualization (NFV). Clust. Comput. 19(4), 1835–1841 (2016)
Kang, Y., Choi, W., Kim, B., et al.: On tradeoff between the two compromise factors in assigning tasks on a cluster computing. Clust. Comput. 17(3), 861–870 (2014)
Noh, K.: A study on the position of CDO for improving competitiveness based big data in cluster computing environment. Clust. Comput. 19(3), 1659–1669 (2016)
Mijumbi, R., Serrat, J., Gorricho, J.L., et al.: Design and evaluation of algorithms for mapping and scheduling of virtual network functions. In: IEEE Conference on Network Softwarization (NetSoft), pp. 1–9, 2015
Chang, V.: Towards data analysis for weather cloud computing. Knowl. Based Syst. 127, 29–45 (2017)
Sun, G., Chang, V., Yang, G., et al.: The cost-efficient deployment of replica servers in virtual content distribution networks for data fusion. Inf. Sci. (2017, in press)
Acknowledgements
This research was partially supported by National Natural Science Foundation of China (61571098), Fundamental Research Funds for the Central Universities (ZYGX2016J217).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liao, D., Wu, Y., Wu, Z. et al. AI-based software-defined virtual network function scheduling with delay optimization. Cluster Comput 22 (Suppl 6), 13897–13909 (2019). https://doi.org/10.1007/s10586-018-2124-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-018-2124-0