Skip to main content

Advertisement

Log in

Research on modal parameters identification of bridge structure based on adaptive signal de-noising method

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

For signal de-noising approach based on singular value decomposition (SVD), the method of determining the row number (p) of Hankel matrix and the effective rank (r) both are key problems. In this paper, an adaptive signal de-noising approach which based on genetic algorithm (GA) and SVD was proposed. Choosing signal to noise ratio (SNR) as fitness function, GA was introduced to automatically optimize the parameter of p and r. Then inverse SVD was conducted to achieve the de-noised signal. In order to demonstrate the validity of the approach, two numerical simulation signals with different frequency components are employed. The results show that p can be N/4 or N/3 (N is the length of data), r is twice as the number of dominating frequency. As for measured signal, the complication of the frequency components might be taken into consideration. And in order not to miss the true frequency components when dealing with measured signals, r should be more than twice as the number of dominating frequency, but p can still be N/4 or N/3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Janacek, G.J.: Practical Time Series. Arnold, London (2001)

    MATH  Google Scholar 

  2. Shumway, R.H., Stoffer, D.S.: Time Series Analysis and Its Applications. Springer, New York (2000)

    Book  Google Scholar 

  3. Kim, Y.Y., Hong, J.C., Lee, N.Y.: Frequency response function estimation via a robust wavelet de-noising method. J. Sound Vib. 244(4), 635–649 (2001)

    Article  Google Scholar 

  4. Lin, J.-W., Laine, A.F., Bergmann, S.R.: Improving PET-based physiology quantification through methods of wavelet denoising. IEEE Trans. Biomed Eng. 48(2), 202–212 (2001)

    Article  Google Scholar 

  5. Shim, I., Soraghan, J.J., Siew, W.H.: Noise reduction technique for on-line detection and location of partial discharges in high voltage cable. Meas. Sci. Technol. 11(12), 1708–1713 (2000)

    Article  Google Scholar 

  6. Presti, L.L., Olmo, G., Bosetto, D.: Turbo estimation algorithms: general principles, and applications to modal analysis. Signal Process. 80(12), 2567–2578 (2000)

    Article  Google Scholar 

  7. Leibrich, J., Puder, H.: A “TF distribution for disturbed and undisturbed speech signals and its application to noise reduction”. Signal Process. 80(9), 1761–1776 (2000)

    Article  Google Scholar 

  8. Jeff, L., Rafik, G.: GMDF for noise reduction and echo cancellation. IEEE Signal Process. Lett. 7(8), 230–232 (2000)

    Article  Google Scholar 

  9. Gharieb, R.R., Cichocki, A.: Noise reduction in bra third-or. IEEE Trans. Biomed. Eng. 48(5), 501–512 (2001)

    Article  Google Scholar 

  10. Muneyasu, M., Nishi, N., Hinamoto, T.: A new adaptive center weighted median filter using counter propagation networks. J. Franklin Inst. 337(5), 631–639 (2000)

    Article  Google Scholar 

  11. Kitamura, K., Iida, H., Shidahara, M., Miura, S., Kanno, I.: Noise reduction in PET attenuation correction using non-linear Gaussian filters. IEEE Trans. Nucl. Sci. 47(3), 994–999 (2000)

    Article  Google Scholar 

  12. Sakitani, K., Maeda, H.: Optimum noise reduction of conjugate quadrature filter bank. Signal Process. 8(5), 819–829 (2000)

    Article  Google Scholar 

  13. Laakso, T.I., Tarczynski, A., Paul Murphy, N., Valimaki, V.: Polynomial filtering approach to reconstruction and noise reduction of nonuniformly sampled signals. Signal Process. 80(4), 567–575 (2000)

    Article  Google Scholar 

  14. Gialamas, T.P., Tsahalis, D.T., Otte, D., Van der Auwaraer, H., Manolas, D.A.: Substructuring techniques: improvement by means of singular value decomposition (SVD). Appl. Acoust. 62(10), 1211–1219 (2001)

    Article  Google Scholar 

  15. Kim, W.C., Chin, I.S., Lee, K.S., Choi, J.: Analysis and reduced-order design of quadratic criterion-based iterative learning control using singular value decomposition. Comput. Chem. Eng. 24(8), 1815–1819 (2000)

    Article  Google Scholar 

  16. Ray, G., Prasad, A.N., Bhattacharyya, T.K.: Design of decentralized robust load–frequency controller based on SVD method. Comput. Electr. Eng. 25(6), 477–492 (1999)

    Article  Google Scholar 

  17. Street, A.M., Lukama, L., Edwards, D.J.: Radio imaging using SVD prony. Electron. Lett. 36(13), 1150–1152 (2000)

    Article  Google Scholar 

  18. Vidya, V., Aravena, Jorge L.: Nonstationary signal classification using pseudo power signatures: the matrix SVD approach. IEEE Trans. Circuits Syst. II 46(12), 1497–1505 (1999)

    Article  Google Scholar 

  19. Dale, G., David, B.: Feature sets for nonstationary signals derived from moments of the singular value decomposition of Cohen-Posch (positive time–frequency) distributions. IEEE Trans. Signal Process. 48(5), 1498–1503 (2000)

    Article  Google Scholar 

  20. Knockaert, L., De Backer, B., De Zutter, D.: SVD compression, unitary transforms, and computational complexity. IEEE Trans. Signal Process. 47(10), 2724–2729 (1999)

    Article  Google Scholar 

  21. Kuo, S.R., Yeih, W., Wu, Y.C.: Applications of the generalized singular value decomposition method on the eigenproblem using the incomplete boundary element formulation. J. Sound Vib. 235(5), 813–845 (2000)

    Article  MathSciNet  Google Scholar 

  22. Chen, J.T., Huang, C.X., Wong, F.C.: Determination of spurious eigenvalue and multiplicities of true eigenvalues in the dual multiple reciprocity method using the singular-value decomposition technique. J. Sound Vib. 230(2), 203–219 (2000)

    Article  Google Scholar 

  23. Pau, J.S., Reddy, M.R., Kumar, V.J.: A transform domain SVD filter for suppression of muscle noise artifacts in exercise ECG’s. IEEE Trans. Biomed. Eng. 47(5), 654–663 (2000)

    Article  Google Scholar 

  24. Kanjilal, P.P., Palit, S.: On multiple pattern extraction using singular value decomposition. IEEE Trans. Signal Process. 43(6), 1536–1540 (1995)

    Article  Google Scholar 

  25. Vautard, R., Yiou, P., Ghil, M.: Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Physica D 58(1–4), 95–126 (1992)

    Article  Google Scholar 

  26. Yang, W.X., Peter, W.T.: Development of an Advanced Noise Reduction Method for Vibration Analysis Based on Singular Value Decomposition. NDT and E Int. 36(6), 419–432 (2003)

    Article  Google Scholar 

  27. Konstantinides, K., Yao, K.: Statistical analysis of effective singular values in matrix rank determination. IEEE Trans. Acousti. Speech Signal Process. 36(5), 757–763 (1988)

    Article  Google Scholar 

  28. Cakar, O., Sanliturk, K.Y.: Elimination of noise and transducer effects from measured response data. In Proceedings of ESDA2002: 6th Biennial Conference on Engineering Systems Design and Analysis, Istanbul (2002)

  29. Zhao, X., Ye, B.: Similarity of signal processing effect between Hankel matrix-based SVD and wavelet transform and its mechanism analysis. Mech. Syst. Signal Process. 23(4), 1062–1075 (2009)

    Article  Google Scholar 

  30. Zhu, Q.B., Liu, J., Li, Y.G.: Study on noise reduction in singular value decomposition based on structural risk minimization. J. Vib. Eng. 18(2), 204–207 (2005). (in Chinese)

    Google Scholar 

  31. Wang, W., Zhang, Y.T., Xu, Z.S.: Noise reduction in singular value decomposition based on dynamic clustering. J. Vib. Eng. 21(3), 304–308 (2008). (in Chinese)

    Google Scholar 

  32. Chunyu, K.: ZHANG Xinhua “An adaptive noise reduction method based on singularity value decompose”. Tech. Acoust. 27(3), 455–458 (2008). (in Chinese)

    Google Scholar 

  33. Konstantinides, K., Natarajan, B., Yovanof, G.S.: Noise estimation and filtering using block-based singular value decomposition. IEEE Trans. Image Process. 6(3), 283–479 (1997)

    Article  Google Scholar 

  34. Hou, Z.: Adaptive singular value decomposition in wavelet domain for image denosing. Pattern Recogn. 36(8), 1747–1763 (2003)

    Article  Google Scholar 

  35. Brenner, M.J.: Non-stationary dynamic data analysis with wavelet-SVD filtering. Mech. Syst. Signal Process. 17(4), 765–786 (2003)

    Article  Google Scholar 

  36. Duan, L.X., Zhang, L.B., Wang, Z.H.: De-noising of diesel vibration signal using wavelet packet and singular value decomposition. Front. Mech. Eng. China 1(4), 443–447 (2006)

    Article  Google Scholar 

  37. Golub, G.H., Van Loan, C.F.: Matrix Computations, 2nd edn. John Hopkins University Press, Baltimore (1989)

    MATH  Google Scholar 

  38. Jensen, S.H., Hansen, P.C., et al.: Reduction of broad-band noise in speech by truncated QSVD. IEEE Trans. Speech Audio Process. 3(6), 439–448 (1995)

    Article  Google Scholar 

  39. Holland, J.H.: Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Michigan (1975)

    MATH  Google Scholar 

  40. Xi-Jun, Y.E., Yan, Q.S., Jian, L.I.: Modal identification and cable tension estimation of long span cable-stayed bridge based on ambient excitation. J. Vib. Shock 31(16), 157–163 (2012). (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant No. 51608136 and Research project of Guangdong Provincial Highway Administration Bureau (No. 2017-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xijun Ye.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, X., Sun, Z. & Chen, B. Research on modal parameters identification of bridge structure based on adaptive signal de-noising method. Cluster Comput 22 (Suppl 6), 14377–14387 (2019). https://doi.org/10.1007/s10586-018-2301-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-2301-1

Keywords

Navigation