Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Application of optimized genetic algorithm based on big data in bus dynamic scheduling

  • Published:
Cluster Computing Aims and scope Submit manuscript

This article was retracted on 22 December 2022

This article has been updated

Abstract

To realize the intelligent vehicle scheduling of public transportation, starting from the statistics data of GPS positioning and video surveillance, the optimization model of bus departure frequency was established. The BP neural network algorithm was used to predict the arrival time of the bus. The passenger flow of bus stops was forecasted, and according to the number of passengers on and off the bus collected by video, the number of passengers on different routes and stations at different time periods was predicted, and the prediction method was exponential smoothing. The bus departure frequency was arranged rationally, and through the establishment of objective function, the waiting time was reduced, the bus utilization rate was improved and the profitability of the bus company was increased. In the case of a variety of constraints, the final objective function was obtained by weighting, and the improved genetic algorithm was applied to obtain the optimal solution. The results showed that the bus frequency target was the minimum average waiting time of passengers and the bus average per trip passenger volume the maximum. To sum up, it is required to meet the standard deviation of the maximum section of every shift reach the minimum, the target with the maximum is transformed into the solution to the minimum, and the three comprehensively calculate the optimal calculation by the weighted sum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Wang, Y., Zhang, D., Hu, L., Yang, Y., Lee, L.H.: A data-driven and optimal bus scheduling model with time-dependent traffic and demand. IEEE Trans. Intell. Transp. Syst. 18(9), 2443–2452 (2017)

    Article  Google Scholar 

  2. Ma, J., Song, C., Ceder, A.A., Liu, T., Guan, W.: Fairness in optimizing bus-crew scheduling process. PLoS ONE 12(11), e0187623 (2017)

    Article  Google Scholar 

  3. Li, J., Peng, K., Shen, Y.: An estimation of distribution algorithm for public transport driver scheduling. Int. J. Oper. Res. 28(2), 245 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Schönberger, J.: Scheduling constraints in dial-a-ride problems with transfers: a metaheuristic approach incorporating a cross-route scheduling procedure with postponement opportunities. Public Transport 9(1–2), 243–272 (2017)

    Article  Google Scholar 

  5. Niekerk, M.E.V.K., Akker, J.M.V.D., Hoogeveen, J.A.: Scheduling electric vehicles. Public Transport 9(1–2), 155–176 (2017)

    Article  Google Scholar 

  6. Krstanoski, N., Atanasova, V.: Practical algorithm for scheduling a public trans-port line with integer solution. Int. J. Sci. Eng. Res. 8(8), 775–780 (2017)

    Google Scholar 

  7. Dunis, C.L., Likothanassis, S.D., Karathanasopoulos, A.S., Sermpinis, G.S., Theofilatos, K.A.: A hybrid genetic algorithm–support vector machine approach in the task of forecasting and trading. J. Asset Manag. 14(1), 52–71 (2013)

    Article  Google Scholar 

  8. Dosdoğru, A.T., Göçken, M., Geyik, F.: Integration of genetic algorithm and monte carlo to analyze the effect of routing flexibility. Int. J. Adv. Manuf. Technol. 81(5–8), 1379–1389 (2015)

    Article  Google Scholar 

  9. Driss, I., Mouss, K.N., Laggoun, A.: A new genetic algorithm for flexible job-shop scheduling problems. J. Mech. Sci. Technol. 29(3), 1273–1281 (2015)

    Article  Google Scholar 

  10. Mazinani, M., Abedzadeh, M., Mohebali, N.: Dynamic facility layout problem based on flexible bay structure and solving by genetic algorithm. Int. J. Adv. Manuf. Technol. 65(5–8), 929–943 (2013)

    Article  Google Scholar 

  11. Kim, N.I., Kim, H., Lee, J.: Damage detection of truss structures using two-stage optimization based on micro genetic algorithm. J. Mech. Sci. Technol. 28(9), 3687–3695 (2014)

    Article  Google Scholar 

  12. Jung, D.S., Kim, C.Y.: Finite element model updating of a simply supported skewed psc i-girder bridge using hybrid genetic algorithm. Ksce J. Civil Eng. 17(3), 518–529 (2013)

    Article  Google Scholar 

  13. Elbathy, N., Gloster, C., Azar, G.: Intelligent internet search technology using a novel genetic algorithm and a service-oriented architecture. Am. J. Intell. Syst. 3(2), 83–92 (2013)

    Google Scholar 

  14. Abhishek, A., Singh, S.: A gene regulatory network prediction method using particle swarm optimization and genetic algorithm. Int. J. Comput. Appl. 83(12), 32–37 (2013)

    Google Scholar 

  15. Xiong, G., Wang, Y.: Best routes selection in multimodal networks using multi-objective genetic algorithm. J. Comb. Optim. 28(3), 1–19 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Natural Science Foundation of Inner Mongolia of China (2015MS0616), Inner Mongolia Scientific and technological innovation guide reward funds project: Facilities Agricultural IOT key equipment and system development and industrialization demonstration, Inner Mongolia Science and Technology Plan Project (201502015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren Qing-dao-er-ji.

Additional information

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s10586-022-03928-1"

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Qing-dao-er-ji, R. RETRACTED ARTICLE: Application of optimized genetic algorithm based on big data in bus dynamic scheduling. Cluster Comput 22 (Suppl 6), 15439–15446 (2019). https://doi.org/10.1007/s10586-018-2625-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-2625-x

Keywords

Navigation