Abstract
Chaotic maps are used in the design of hash functions due to their characteristics that are analogous to cryptographic requirements. However, these maps are commonly implemented using floating point representation which has high computational complexity. They also suffer from interoperability problems and are not easy to analyse from the binary point of view. These drawbacks lead to a lack of acceptance of chaos-based cryptography for practical use. This paper overcomes these problems by introducing a chaos-based hash function implemented using fixed point representation which computes digital chaotic maps using integers. Its design is based on the Merkle–Damgård construction and the generalised Feistel structure for strong security justifications. Security evaluation indicates that the proposed hash function has near-perfect statistical properties which include diffusion, confusion, collision resistance and distribution. The proposed hash function also surpasses existing chaos-based hash functions in terms of performance, making it a viable hash function for practical implementation.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10586-018-2870-z/MediaObjects/10586_2018_2870_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10586-018-2870-z/MediaObjects/10586_2018_2870_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10586-018-2870-z/MediaObjects/10586_2018_2870_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10586-018-2870-z/MediaObjects/10586_2018_2870_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10586-018-2870-z/MediaObjects/10586_2018_2870_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10586-018-2870-z/MediaObjects/10586_2018_2870_Fig6_HTML.png)
Similar content being viewed by others
References
Teh, J.S., Samsudin, A.: A chaos-based authenticated cipher with associated data. Security and Communication Networks (9040518) (2017). https://doi.org/10.1155/2017/9040518
Li, G., Pu, Y., Yang, B., Zhao, J.: Synchronization between different hyper chaotic systems and dimensions of cellular neural network and its design in audio encryption. Clust. Comput. (2018). https://doi.org/10.1007/s10586-018-1700-7
Teh, J.S., Samsudin, A., Al-Mazrooie, M., Akhavan, A.: Gpus and chaos: a new true random number generator. Nonlinear Dyn. (2015). https://doi.org/10.1007/s11071-015-2287-7
Fips pub 180-4: Secure hash standard (shs). Tech. rep., National Institute of Standards and Technology (2012)
Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak SHA-3 Submission, Version 3. SHA-3 Cryptographic Hash Algorithm Competition (2011). http://keccak.noekeon.org
Akhavan, A., Samsudin, A., Akshani, A.: A novel parallel hash function based on 3D chaotic map. EURASIP J. Adv. Signal Process. 1, 126 (2013)
Kanso, A., Ghebleh, M.: A fast and efficient chaos-based keyed hash function. Commun. Nonlinear Sci. Numer. Simul. 18(1), 109–123 (2013). https://doi.org/10.1016/j.cnsns.2012.06.019
Teh, J.S., Samsudin, A., Akhavan, A.: Parallel chaotic hash function based on the shuffle-exchange network. Nonlinear Dyn. 81(3), 1067–1079 (2015). https://doi.org/10.1007/s11071-015-2049-6
Li, Y., Ge, G., Xia, D.: Chaotic hash function based on the dynamic s-box with variable parameters. Nonlinear Dyn. 84(4), 2387–2402 (2016). https://doi.org/10.1007/s11071-016-2652-1
Chenaghlu, M.A., Jamali, S., Khasmakhi, N.N.: A novel keyed parallel hashing scheme based on a new chaotic system. Chaos Solitons Fractals 87, 216–225 (2016). https://doi.org/10.1016/j.chaos.2016.04.007
Lin, Z., Guyeux, C., Yu, S., Wang, Q., Cai, S.: On the use of chaotic iterations to design keyed hash function. Clust. Comput. (2017). https://doi.org/10.1007/s10586-017-1062-6
Ahmad, M., Khurana, S., Singh, S., AlSharari, H.D.: A simple secure hash function scheme using multiple chaotic maps. 3D Res. 8(2), 13 (2017). https://doi.org/10.1007/s13319-017-0123-1
Li, Y., Li, X., Liu, X.: A fast and efficient hash function based on generalized chaotic mapping with variable parameters. Neural Comput. Appl. 28(6), 1405–1415 (2017). https://doi.org/10.1007/s00521-015-2158-7
Guo, W., Wang, X., Hea, D., Cao, Y.: Cryptanalysis on a parallel keyed hash function based on chaotic maps. Phys. Lett. A 373, 3201–3206 (2009)
Wang, X., Zhao, J.: Cryptanalysis on a parallel keyed hash function based on chaotic neural network. Neurocomputing 73(16), 3224–3228 (2010). https://doi.org/10.1016/j.neucom.2010.05.011. 10th Brazilian Symposium on Neural Networks (SBRN2008)
Wang, X., Guo, W., Zhang, W., Khan, M.K., Alghathbar, K.: Cryptanalysis and improvement on a parallel keyed hash function based on chaotic neural network. Telecommun. Syst. 52(2), 515–524 (2013). https://doi.org/10.1007/s11235-011-9457-9
Ghonaim, W., Ghali, N.I., Hassanien, A.E., Banerjee, S.: An improvement of chaos-based hash function in cryptanalysis approach: an experience with chaotic neural networks and semi-collision attack. Memet. Comput. 5(3), 179–185 (2013). https://doi.org/10.1007/s12293-013-0113-7
Suzaki, T., Minematsu, K.: Improving the generalized feistel. In: Fast Software Encryption: 17th International Workshop, FSE 2010, pp. 19–39. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-13858-4_2
Baptista, M.: Cryptography with chaos. Phys. Lett. A 240(1), 50–54 (1998). https://doi.org/10.1016/S0375-9601(98)00086-3
Yates, R.: Fixed-Point Arithmetic: An Introduction. Digital Signal Labs (2013). www.digitalsignallabs.com/fp.pdf
Fog, A.: Instruction tables. Tech. rep., Technical University of Denmark (2018). http://www.agner.org/optimize/instruction_tables.pdf
Schneier, B.: Description of a new variable-length key, 64-bit block cipher (blowfish). In: Anderson, R. (ed.) Fast Software Encryption, pp. 191–204. Springer, Berlin (1994)
Rivest, R.L.: The rc5 encryption algorithm. In: Preneel, B. (ed.) Fast Software Encryption, pp. 86–96. Springer, Berlin (1995)
Kwon, D., Kim, J., Park, S., Sung, S.H., Sohn, Y., Song, J.H., Yeom, Y., Yoon, E.J., Lee, S., Lee, J., Chee, S., Han, D., Hong, J.: New block cipher: Aria. In: Lim, J.I., Lee, D.H. (eds.) Information Security and Cryptology—ICISC 2003, pp. 432–445. Springer, Berlin (2004)
Oteo, J., Ros, J.: Double precision errors in the logistic map: statistical study and dynamical interpretation. Phys. Rev. E 76(3), 036,214 (2007). https://doi.org/10.1103/PhysRevE.76.036214
Carter, G., Dawson, E., Nielsen, L.: Key schedules of iterative block ciphers. In: Boyd, C., Dawson, E. (eds.) Information Security and Privacy, pp. 80–89. Springer, Berlin (1998)
Chankasame, W., San-Um, W.: A chaos-based keyed hash function for secure protocol and messege authentication in mobile ad hoc wireless networks. In: 2015 Science and Information Conference (SAI), pp. 1357–1364 (2015). https://doi.org/10.1109/SAI.2015.7237319
Algorithms, key size and protocols report (2018). Tech. rep., ECRYPT-CSA (2018). http://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
Ahmad, M., Singh, S., Khurana, S.: Cryptographic one-way hash function generation using twelve-terms 4d nonlinear system. Int. J. Inf. Technol. (2018). https://doi.org/10.1007/s41870-018-0199-8
Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search. In: Advances in Cryptology—EUROCRYPT 2009, pp. 134–152. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-01001-9_8
Mendel, F., Nad, T., Schlaffer, M.: Improving local collisions: new attacks on reduced SHA-256. In: T. Johansson, P. Nguyen (eds.) Advances in Cryptology—EUROCRYPT 2013, Lecture Notes in Computer Science, vol. 7881, pp. 262–278. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-38348-9_16
Acknowledgements
This work has been partially supported by Universiti Sains Malaysia under Grant No. 304/PKOMP/6315190 and also the National Natural Science Foundation of China under Grant No. 61702212.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Teh, J.S., Tan, K. & Alawida, M. A chaos-based keyed hash function based on fixed point representation. Cluster Comput 22, 649–660 (2019). https://doi.org/10.1007/s10586-018-2870-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-018-2870-z