Skip to main content

Advertisement

Log in

Optimizing virtual machine placement in IaaS data centers: taxonomy, review and open issues

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The unprecedented growth of energy consumption in data centers created critical concern in recent years for both the research community and industry. Besides its direct associated cost; high energy consumption also results in a large amount of CO2 emission and incurs extra cooling expenditure. The foremost reason for overly energy consumption is the underutilization of data center resources. In modern data centers, virtualization provides a promising approach to improve the hardware utilization level. Virtual machine placement is a process of mapping a group of virtual machines (VMs) onto a set of physical machines (PMs) in a data center with the aim of maximizing resource utilization and minimizing the total power consumption by PMs. An optimal virtual machine placement algorithm substantially contributes to cutting down the power consumption through assigning the input VMs to a minimum number of PMs and allowing the dispensable PMs to be turned off. However, VM Placement Problem is a complex combinatorial optimization problem and known to be NP-Hard problem. This paper presents an extensive review of virtual machine placement problem along with an overview of different approaches for solving virtual machine placement problem. The aim of this paper is to illuminate challenges and issues for current virtual machine placement techniques. Furthermore, we present a taxonomy of virtual machine placement based on various aspects such as methodology, number of objectives, operation mode, problem objectives, resource demand type and number of clouds. The state-of-the-art VM Placement techniques are classified in single objectives and multi-objective groups and a number of prominent works are reviewed in each group. Eventually, some open issues and future trends are discussed which serve as a platform for future research work in this domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Jing, S.-Y., Ali, S., She, K., Zhong, Y.: State-of-the-art research study for green cloud computing. J. Supercomput. 65(1), 445–468 (2013). https://doi.org/10.1007/s11227-011-0722-1

    Article  Google Scholar 

  2. Guo, Y., Fang, Y.: Electricity cost saving strategy in data centers by using energy storage. IEEE Trans. Parallel Distrib. Syst. 24(6), 1149–1160 (2013)

    Google Scholar 

  3. Shigeta, S., Yamashima, H., Doi, T., Kawai, T., Fukui, K.: Design and implementation of a multi-objective optimization mechanism for virtual machine placement in cloud computing data center. In: Proceedings of the International Conference on Cloud Computing, pp. 21–31. Springer, Cham (2013)

  4. Rasmussen, N.: Implementing energy efficient data centers. American Power Conversion, West Kingston (2006)

    Google Scholar 

  5. Guo, Y., Ding, Z., Fang, Y., Wu, D.: Cutting down electricity cost in internet data centers by using energy storage. In: Proceedings of the International Conference on IEEE Global Telecommunications Conference (GLOBECOM 2011), pp. 1–5. IEEE, Kathmandu (2011)

  6. Dasgupta, G., Sharma, A., Verma, A., Neogi, A., Kothari, R.: Workload management for power efficiency in virtualized data centers. Commun. ACM 54(7), 131–141 (2011)

    Google Scholar 

  7. Li, X., Qian, Z., Lu, S., Wu, J.: Energy efficient virtual machine placement algorithm with balanced and improved resource utilization in a data center. Math. Comput. Modell. 58(5), 1222–1235 (2013)

    MathSciNet  Google Scholar 

  8. Bilal, K., Malik, S.U.R., Khalid, O., Hameed, A., Alvarez, E., Wijaysekara, V., Irfan, R., Shrestha, S., Dwivedy, D., Ali, M., Khan, S.U.: A taxonomy and survey on green data center networks. Future Gener. Comput. Syst. 36, 189–208 (2013). https://doi.org/10.1016/j.future.2013.07.006

    Article  Google Scholar 

  9. Kansal, N.J., Chana, I.: Artificial bee colony based energy-aware resource utilization technique for cloud computing. Concurr. Comput. 27(5), 1207–1225 (2014)

    Google Scholar 

  10. Yu, Y., Gao, Y.: Constraint programming-based virtual machines placement algorithm in datacenter. In: Proceedings of the International Conference on Intelligent Information Processing VI, pp. 295–304. Springer, Berlin (2012)

  11. Bellur, U., Rao, C.S.: Optimal placement algorithms for virtual machines. http://arxiv.org/abs/1011.5064. (2010)

  12. Xu, J., Fortes, J.: A multi-objective approach to virtual machine management in datacenters. Paper presented at the 8th ACM International Conference on Autonomic Computing, Karlsruhe, Germany (2011)

  13. Usmani, Z., Singh, S.: A survey of virtual machine placement techniques in a cloud data center. Proc. Comput. Sci. 78, 491–498 (2016)

    Google Scholar 

  14. Masdari, M., Nabavi, S.S., Ahmadi, V.: An overview of virtual machine placement schemes in cloud computing. J. Netw. Comput. Appl. 66, 106–127 (2016)

    Google Scholar 

  15. Lopez-Pires, F., Baran, B.: Virtual machine placement literature review. http://arxiv.org/abs/1506.01509 (2015)

  16. Pietri, I., Sakellariou, R.: Mapping virtual machines onto physical machines in cloud computing: a survey. ACM Comput. Surv. (CSUR) 49(3), 49 (2016)

    Google Scholar 

  17. Liang, H., Xing, T., Cai, L.X., Huang, D., Peng, D., Liu, Y.: Adaptive computing resource allocation for mobile cloud computing. Int. J. Distrib. Sens. Netw. 2013, 14 (2013). https://doi.org/10.1155/2013/181426

    Article  Google Scholar 

  18. Subashini, S., Kavitha, V.: A survey on security issues in service delivery models of cloud computing. J. Netw. Comput. Appl. 34(1), 1–11 (2011). https://doi.org/10.1016/j.jnca.2010.07.006

    Article  Google Scholar 

  19. Do, T.V., Rotter, C.: Comparison of scheduling schemes for on-demand IaaS requests. J. Syst. Softw. 85(6), 1400–1408 (2012)

    Google Scholar 

  20. Fei, X., Fangming, L., Hai, J., Vasilakos, A.V.: Managing performance overhead of virtual machines in cloud computing: a survey, state of the art, and future directions. Proc. IEEE 102(1), 11–31 (2014). https://doi.org/10.1109/JPROC.2013.2287711

    Article  Google Scholar 

  21. Kim, G., Park, H., Yu, J., Lee, W.: Virtual machines placement for network isolation in clouds. Paper presented at the ACM Research in Applied Computation Symposium, San Antonio, TX (2012)

  22. Jeyarani, R., Nagaveni, N., Ram, R.V.: Self adaptive particle swarm optimization for efficient virtual machine provisioning in cloud. Int. J. Intell. Inf. Technol. (IJIIT) 7(2), 25–44 (2011)

    Google Scholar 

  23. Graubner, P., Schmidt, M., Freisleben, B.: Energy-efficient virtual machine consolidation. IT Prof. 15(2), 0028–0034 (2013)

    Google Scholar 

  24. Li, H., Wang, J., Peng, J., Wang, J., Liu, T.: Energy-aware scheduling scheme using workload-aware consolidation technique in cloud data centres. Commun. China 10(12), 114–124 (2013). https://doi.org/10.1109/CC.2013.6723884

    Article  Google Scholar 

  25. Vogels, W.: Beyond server consolidation. Queue 6(1), 20–26 (2008)

    Google Scholar 

  26. Verma, A., Ahuja, P., Neogi, A.: Power-aware dynamic placement of hpc applications. Paper presented at the 22nd Annual International Conference on Supercomputing, Greece (2008)

  27. Anand, A.: Adaptive Virtual Machine Placement supporting performance SLAs. Master’s thesis, Supercomputer Education and Research Center, Indian Institute of Science (2013)

  28. Medina, V., García, J.M.: A survey of migration mechanisms of virtual machines. ACM Comput. Surv. (CSUR) 46(3), 30 (2014)

    MathSciNet  Google Scholar 

  29. Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Sandpiper: black-box and gray-box resource management for virtual machines. Comput. Netw. 53(17), 2923–2938 (2009)

    MATH  Google Scholar 

  30. Gao, Y., Guan, H., Qi, Z., Wang, B., Liu, L.: Quality of service aware power management for virtualized data centers. J. Syst. Architect. 59(4), 245–259 (2013)

    Google Scholar 

  31. Birkenheuer, G., Brinkmann, A., Kaiser, J., Keller, A., Keller, M., Kleineweber, C., Konersmann, C., Niehörster, O., Schäfer, T., Simon, J.: Virtualized HPC: a contradiction in terms. Software 42(4), 485–500 (2012)

    Google Scholar 

  32. Pearce, M., Zeadally, S., Hunt, R.: Virtualization: issues, security threats, and solutions. ACM Comput. Surv. (CSUR) 45(2), 17 (2013)

    Google Scholar 

  33. Kaplan, J.M., Forrest, W., Kindler, N.: Revolutionizing data center energy efficiency. In. Technical report, McKinsey & Company, New York (2008)

  34. Luo, J.-P., Li, X., Chen, M.-R.: Hybrid shuffled frog leaping algorithm for energy-efficient dynamic consolidation of virtual machines in cloud data centers. Expert Syst. Appl. 41(13), 5804–5816 (2014)

    Google Scholar 

  35. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009). https://doi.org/10.1016/j.future.2008.12.001

    Article  Google Scholar 

  36. Gartner: Gartner Urges IT and Business Leaders to Wake up to IT’s Energy Crisis. http://www.gartner.com/newsroom/id/496819 (2007). Accessed 2014

  37. Gartner: Gartner estimates ICT industry accounts for 2 percent of global CO2 emissions. http://www.gartner.com/newsroom/id/503867 (2007). Accessed 2014

  38. Lee, Y.C., Zomaya, A.Y.: Energy efficient utilization of resources in cloud computing systems. J. Supercomput. 60(2), 268–280 (2012)

    Google Scholar 

  39. Pascual, J.A., Lorido-Botrán, T., Miguel-Alonso, J., Lozano, J.A.: Towards a greener cloud infrastructure management using optimized placement policies. J. Grid Comput. (2014). https://doi.org/10.1007/s10723-014-9312-9

    Article  Google Scholar 

  40. Lucas-Simarro, J.L., Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Scheduling strategies for optimal service deployment across multiple clouds. Future Gener. Comput. Syst. 29(6), 1431–1441 (2013)

    Google Scholar 

  41. Ma, F., Liu, F., Liu, Z.: Multi-objective optimization for initial virtual machine placement in cloud data center. J. Inf. Comput. Sci. 9(16), 5029–5038 (2012)

    Google Scholar 

  42. Zheng, Q., Li, R., Li, X., Shah, N., Zhang, J., Tian, F., Chao, K.-M., Li, J.: Virtual machine consolidated placement based on multi-objective biogeography-based optimization. Future Gener. Comput. Syst. 54, 95–122 (2016). https://doi.org/10.1016/j.future.2015.02.010

    Article  Google Scholar 

  43. Mastroianni, C., Meo, M., Papuzzo, G.: Probabilistic consolidation of virtual machines in self-organizing cloud data centers. IEEE Trans. Cloud Comput. 1(2), 215–228 (2013). https://doi.org/10.1109/TCC.2013.17

    Article  Google Scholar 

  44. Kanagavelu, R., Lee, B.-S., Le, N.T.D., Mingjie, L.N., Aung, K.M.M.: Virtual machine placement with two-path traffic routing for reduced congestion in data center networks. Comput. Commun. 53, 1–12 (2014). https://doi.org/10.1016/j.comcom.2014.07.009

    Article  Google Scholar 

  45. Speitkamp, B., Bichler, M.: A mathematical programming approach for server consolidation problems in virtualized data centers. IEEE Trans. Serv. Comput. 3(4), 266–278 (2010). https://doi.org/10.1109/TSC.2010.25

    Article  Google Scholar 

  46. Talbi, E.-G.: Metaheuristics: from design to implementation, vol. 74. Wiley, New Jersey (2009)

    MATH  Google Scholar 

  47. Tang, Z., Mo, Y., Li, K., Li, K.: Dynamic forecast scheduling algorithm for virtual machine placement in cloud computing environment. J. Supercomput. 70(3), 1279–1296 (2014). https://doi.org/10.1007/s11227-014-1227-5

    Article  Google Scholar 

  48. Liu, X.F., Zhan, Z.H., Deng, J.D., Li, Y., Gu, T., Zhang, J.: An energy efficient ant colony system for virtual machine placement in cloud computing. IEEE Trans. Evol. Comput. (2016). https://doi.org/10.1109/tevc.2016.2623803

    Article  Google Scholar 

  49. Ajiro, Y., Tanaka, A.: Improving packing algorithms for server consolidation. In: Proceedings of the International Conference for the Computer Measurement Group (CMG), pp. 399–406 (2007)

  50. Wilcox, D., McNabb, A., Seppi, K.: Solving virtual machine packing with a reordering grouping genetic algorithm. Paper Presented at the IEEE Congress of Evolutionary Computation (CEC), (2011)

  51. Yan, J., Zhang, H., Xu, H., Zhang, Z.: Discrete PSO-based workload optimization in virtual machine placement. Pers. Ubiquit. Comput. 22(3), 589–596 (2018)

    Google Scholar 

  52. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Gener. Comput. Syst. 28(5), 755–768 (2012)

    Google Scholar 

  53. Fan, X., Weber, W.-D., Barroso, L.A.: Power provisioning for a warehouse-sized computer. Paper Presented at the 34th annual international symposium on Computer architecture, San Diego, California, USA (2007)

  54. Beloglazov, A., Buyya, R.: Adaptive threshold-based approach for energy-efficient consolidation of virtual machines in cloud data centers. Paper presented at the 8th International Workshop on Middleware for Grids, Clouds and e-Science, Bangalore, India (2010)

  55. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurr. Comput. Pract. Exp. 24(13), 1397–1420 (2012). https://doi.org/10.1002/cpe.1867

    Article  Google Scholar 

  56. Quang-Hung, N., Nien, P.D., Nam, N.H., Tuong, N.H., Thoai, N.: A genetic algorithm for power-aware virtual machine allocation in private cloud. In: Proceedings of the International Conference on Information and Communication Technology, pp. 183–191. Springer, Berlin (2013)

  57. Wang, X., Liu, X., Fan, L., Jia, X.: A decentralized virtual machine migration approach of data centers for cloud computing. Math. Probl. Eng. 2013, 10 (2013). https://doi.org/10.1155/2013/878542

    Article  Google Scholar 

  58. Ding, Y., Qin, X., Liu, L., Wang, T.: Energy efficient scheduling of virtual machines in cloud with deadline constraint. Future Gener. Comput. Syst. 50, 62–74 (2015). https://doi.org/10.1016/j.future.2015.02.001

    Article  Google Scholar 

  59. Lovász, G., Niedermeier, F., de Meer, H.: Performance tradeoffs of energy-aware virtual machine consolidation. Clust. Comput. 16(3), 481–496 (2013). https://doi.org/10.1007/s10586-012-0214-y

    Article  Google Scholar 

  60. Madhusudhan, B., Sekaran, K.C.: A Genetic algorithm approach for virtual machine placement in cloud. Paper presented at the international conference on emerging research in computing, information, communication and applications (ERCICA 2013), Bangalore, India (2013)

  61. Ebrahimirad, V., Goudarzi, M., Rajabi, A.: Energy-aware scheduling for precedence-constrained parallel virtual machines in virtualized data centers. J. Grid Comput. 13(2), 233–253 (2015). https://doi.org/10.1007/s10723-015-9327-x

    Article  Google Scholar 

  62. Verma, A., Ahuja, P., Neogi, A.: pMapper: power and migration cost aware application placement in virtualized systems. Paper presented at the 9th ACM/IFIP/USENIX international conference on the middleware, Leuven, Belgium (2008)

  63. Abdullah, M., Lu, K., Wieder, P., Yahyapour, R.: A heuristic-based approach for dynamic VMS consolidation in cloud data centers. Arab. J. Sci. Eng. 1, 15 (2017)

    Google Scholar 

  64. Gao, Y., Guan, H., Qi, Z., Song, T., Huan, F., Liu, L.: Service level agreement based energy-efficient resource management in cloud data centers. Comput. Electr. Eng. 40(5), 1621–1633 (2014). https://doi.org/10.1016/j.compeleceng.2013.11.001

    Article  Google Scholar 

  65. Kessaci, Y., Melab, N., Talbi, E.-G.: A multi-start local search heuristic for an energy efficient VMs assignment on top of the OpenNebula cloud manager. Future Gener. Comput. Syst. 36, 237–256 (2014)

    Google Scholar 

  66. Milojičić, D., Llorente, I.M., Montero, R.S.: Opennebula: a cloud management tool. IEEE Internet Comput. 15(2), 11–14 (2011)

    Google Scholar 

  67. Ferreto, T.C., Netto, M.A., Calheiros, R.N., De Rose, C.A.: Server consolidation with migration control for virtualized data centers. Future Gener. Comput. Syst. 27(8), 1027–1034 (2011)

    Google Scholar 

  68. Alharbi, F., Tian, Y.-C., Tang, M., Zhang, W.-Z., Peng, C., Fei, M.: An ant colony system for energy-efficient dynamic virtual machine placement in data centers. Expert Syst. Appl. 120, 228–238 (2019)

    Google Scholar 

  69. Liu, X.-F., Zhan, Z.-H., Du, K.-J., Chen, W.-N.: Energy aware virtual machine placement scheduling in cloud computing based on ant colony optimization approach. Paper presented at the Genetic and evolutionary computation, Vancouver, BC, Canada (2014)

  70. Alharbi, F., Tian, Y.-C., Tang, M., Ferdaus, M.H.: Profile-based ant colony optimization for energy-efficient virtual machine placement. In: Proceedings of the International Conference on Neural Information Processing 2017, pp. 863–871. Springer, Cham (2017)

  71. Xiao, Z., Ming, Z.: A state based energy optimization framework for dynamic virtual machine placement. Data Knowl. Eng. 120, 83–99 (2019)

    Google Scholar 

  72. Greenberg, A., Hamilton, J., Maltz, D.A., Patel, P.: The cost of a cloud: research problems in data center networks. ACM SIGCOMM Comput. Commun. Rev. 39(1), 68–73 (2008)

    Google Scholar 

  73. Fang, W., Liang, X., Li, S., Chiaraviglio, L., Xiong, N.: VMPlanner: optimizing virtual machine placement and traffic flow routing to reduce network power costs in cloud data centers. Comput. Netw. 57(1), 179–196 (2013)

    Google Scholar 

  74. Liu, X., Gu, H., Zhang, H., Liu, F., Chen, Y., Yu, X.: Energy-Aware on-chip virtual machine placement for cloud-supported cyber-physical systems. Microprocess. Microsyst. 52, 427–437 (2017). https://doi.org/10.1016/j.micpro.2016.07.013

    Article  Google Scholar 

  75. Meng, X., Pappas, V., Zhang, L.: Improving the scalability of data center networks with traffic-aware virtual machine placement. Paper presented at the 29th conference on Information communications, San Diego, California, USA (2010)

  76. Armour, G.C., Buffa, E.S.: A heuristic algorithm and simulation approach to relative location of facilities. Manage. Sci. 9(2), 294–309 (1963)

    Google Scholar 

  77. Burkard, R.E., Rendl, F.: A thermodynamically motivated simulation procedure for combinatorial optimization problems. Eur. J. Oper. Res. 17(2), 169–174 (1984)

    MATH  Google Scholar 

  78. da Silva, R.A.C., da Fonseca, N.L.S.: Topology-aware virtual machine placement in data centers. J. Grid Comput. 14(1), 75–90 (2016). https://doi.org/10.1007/s10723-015-9343-x

    Article  Google Scholar 

  79. Rahimzadeh Ilkhechi, A., Korpeoglu, I., Ulusoy, Ö.: Network-aware virtual machine placement in cloud data centers with multiple traffic-intensive components. Comput. Netw. 91, 508–527 (2015). https://doi.org/10.1016/j.comnet.2015.08.042

    Article  Google Scholar 

  80. Song, F., Huang, D., Zhou, H., Zhang, H., You, I.: An optimization-based scheme for efficient virtual machine placement. Int. J. Parallel Prog. 42(5), 853–872 (2013)

    Google Scholar 

  81. Xu, J., Fortes, J.A.: Multi-objective virtual machine placement in virtualized data center environments. Paper presented at the IEEE/ACM international conference on green computing and communications (GreenCom) and IEEE/ACM international conference on cyber, physical and social computing (CPSCom), Hangzhou, China (2010)

  82. Cho, K.-M., Tsai, P.-W., Tsai, C.-W., Yang, C.-S.: A hybrid meta-heuristic algorithm for VM scheduling with load balancing in cloud computing. Neural Comput. Appl. 26(6), 1297–1309 (2014). https://doi.org/10.1007/s00521-014-1804-9

    Article  Google Scholar 

  83. He, L., Zou, D., Zhang, Z., Chen, C., Jin, H., Jarvis, S.A.: Developing resource consolidation frameworks for moldable virtual machines in clouds. Future Gener. Comput. Syst. 32, 69–81 (2014). https://doi.org/10.1016/j.future.2012.05.015

    Article  Google Scholar 

  84. Hermenier, F., Lorca, X., Menaud, J.-M., Muller, G., Lawall, J.: Entropy: a consolidation manager for clusters. Paper presented at the ACM SIGPLAN/SIGOPS international conference on virtual execution environments, Washington, DC, USA (2009)

  85. Wray, M.: From server consolidation to network consolidation. Netw. Secur. 2012(2), 8–11 (2012). https://doi.org/10.1016/S1353-4858(12)70014-4

    Article  Google Scholar 

  86. Khosravi, A., Garg, S., Buyya, R.: Energy and carbon-efficient placement of virtual machines in distributed cloud data centers. In: Wolf, F., Mohr, B., Mey, D. (eds.) Euro-Par 2013 Parallel Processing. Lecture Notes in Computer Science, vol. 8097, pp. 317–328. Springer, Berlin (2013)

  87. Moghaddam, F.F., Moghaddam, R.F., Cheriet, M.: Carbon-aware distributed cloud: multi-level grouping genetic algorithm. Clust.Comput. (2014). https://doi.org/10.1007/s10586-014-0359-y

    Article  Google Scholar 

  88. Pop, C.B., Anghel, I., Cioara, T., Salomie, I., Vartic, I.: A swarm-inspired data center consolidation methodology. Paper presented at the 2nd international conference on web intelligence, mining and semantics, Craiova, Romania (2012)

  89. Son, S., Jung, G., Jun, S.: An SLA-based cloud computing that facilitates resource allocation in the distributed data centers of a cloud provider. J. Supercomput. 64(2), 606–637 (2013). https://doi.org/10.1007/s11227-012-0861-z

    Article  Google Scholar 

  90. Tordsson, J., Montero, R.S., Moreno-Vozmediano, R., Llorente, I.M.: Cloud brokering mechanisms for optimized placement of virtual machines across multiple providers. Future Gener. Comput. Syst. 28(2), 358–367 (2012)

    Google Scholar 

  91. Fourer, R., Gay, D.M., Kernighan, B.W.: A modeling language for mathematical programming. Manage. Sci. 36(5), 519–554 (1990)

    MATH  Google Scholar 

  92. IBM Corporation: CPLEX Optimizer. http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html. Accessed Oct 2014

  93. Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK benchmark: past, present and future. Concurr. Comput. Pract. Exp. 15(9), 803–820 (2003)

    Google Scholar 

  94. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Mathematical Programming Language. AT&T Bell Laboratories, Murray Hill (1987)

    MATH  Google Scholar 

  95. Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A multi-objective ant colony system algorithm for virtual machine placement in cloud computing. J. Comput. Syst. Sci. 79(8), 1230–1242 (2013)

    MathSciNet  MATH  Google Scholar 

  96. Deb, K.: Multi-objective optimization. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies, pp. 403–449. Springer, New York (2014)

    Google Scholar 

  97. Gen, M., Cheng, R.: Genetic Algorithm and Engineering Optimization. Wiley, New York (2000)

    Google Scholar 

  98. Caponio, A., Neri, F.: Integrating cross-dominance adaptation in multi-objective memetic algorithms. In: Goh, C.-K., Ong, Y.-S., Tan, K. (eds.) Multi-Objective Memetic Algorithms. Studies in Computational Intelligence, vol. 171, pp. 325–351. Springer, Berlin (2009)

    MATH  Google Scholar 

  99. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Google Scholar 

  100. Feller, E., Rilling, L., Morin, C.: Energy-aware ant colony based workload placement in clouds. Paper presented at the 12th IEEE/ACM international conference on grid computing, Lyon (2011)

  101. Veldhuizen, D.: Multiobjective evolutionary algorithms: classifications, analyses, and new innovations. In: School of Engineering of the Air Force Institute of Technology, Dayton, Ohio (1999)

  102. Schott, J.R.: Fault tolerant design using single and multicriteria genetic algorithm optimization. In: Air Force Inst of Tech Wright-Patterson AFB OH (1995)

  103. Jamali, S., Malektaji, S., Analoui, M.: An imperialist competitive algorithm for virtual machine placement in cloud computing. J. Exp. Theor. Artif. Intell. 29(3), 575–596 (2017)

    Google Scholar 

  104. Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. Paper presented at the IEEE congress on evolutionary eomputation. CEC (2007)

  105. Sharifi, M., Salimi, H., Najafzadeh, M.: Power-efficient distributed scheduling of virtual machines using workload-aware consolidation techniques. J. Supercomput. 61(1), 46–66 (2012)

    Google Scholar 

  106. Dong, J., Wang, H., Li, Y., Cheng, S.: Virtual machine scheduling for improving energy efficiency in IaaS cloud. Commun. China 11(3), 1–12 (2014). https://doi.org/10.1109/CC.2014.6825253

    Article  Google Scholar 

  107. Tang, M., Pan, S.: A hybrid genetic algorithm for the energy-efficient virtual machine placement problem in data centers. Neural Process. Lett. 41(2), 211–221 (2014)

    Google Scholar 

  108. Chen, X., Jiang, J.-H.: A method of virtual machine placement for fault-tolerant cloud applications. Intell. Autom. Soft Comput. 22(4), 587–597 (2016). https://doi.org/10.1080/10798587.2016.1152775

    Article  Google Scholar 

  109. Gupta, M.K., Amgoth, T.: Resource-aware virtual machine placement algorithm for IaaS cloud. J. Supercomput. 74(1), 122–140 (2018)

    Google Scholar 

  110. Esfandiarpoor, S., Pahlavan, A., Goudarzi, M.: Structure-aware online virtual machine consolidation for datacenter energy improvement in cloud computing. Comput. Electr. Eng. 42, 74–89 (2015)

    Google Scholar 

  111. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: CloudSim a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)

    Google Scholar 

  112. Yue, M.: A simple proof of the inequality FFD (L) ≤ 11/9 OPT (L) + 1,∀ L for the FFD bin-packing algorithm. Acta Mathematicae Applicatae Sinica 7(4), 321–331 (1991)

    MathSciNet  MATH  Google Scholar 

  113. Zhao, H., Wang, J., Liu, F., Wang, Q., Zhang, W., Zheng, Q.: Power-aware and performance-guaranteed virtual machine placement in the cloud. IEEE Trans. Parallel Distrib. Syst. 29(6), 1385–1400 (2018)

    Google Scholar 

  114. Wang, J., Huang, C., He, K., Wang, X., Chen, X., Qin, K.: An energy-aware resource allocation heuristics for VM scheduling in cloud. In: Proceedings of the 2013 International Conference on IEEE 10th International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing, pp. 587–594. IEEE (2013)

  115. Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for managing sla violations. Paper presented at the 10th IFIP/IEEE international symposium on integrated network management, Munich (2007)

  116. Khargharia, B., Hariri, S., Yousif, M.S.: Autonomic power and performance management for computing systems. Clust. Comput. 11(2), 167–181 (2008)

    Google Scholar 

  117. Ranganathan, P., Leech, P., Irwin, D., Chase, J.: Ensemble-level power management for dense blade servers. Paper presented at the ACM SIGARCH computer architecture news (2006)

  118. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm. In: Proceedings of the International Conference on Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (2001)

  119. Bianchini, R., Rajamony, R.: Power and energy management for server systems. IEEE Comput. 37(11), 68–74 (2004)

    Google Scholar 

  120. Wu, G., Tang, M., Tian, Y.-C., Li, W.: Energy-efficient virtual machine placement in data centers by genetic algorithm. In: Huang, T., Zeng, Z., Li, C., Leung, C. (eds.) Neural Information Processing. Lecture Notes in Computer Science, vol. 7665, pp. 315–323. Springer, Berlin (2012)

    Google Scholar 

  121. Chen, T., Gao, X., Chen, G.: Optimized virtual machine placement with traffic-aware balancing in data center networks. Sci. Programm. 2016, 10 (2016). https://doi.org/10.1155/2016/3101658

    Article  Google Scholar 

  122. Gupta, A., Milojicic, D., Kalé, L.V.: Optimizing VM placement for HPC in the cloud. Paper presented at the workshop on cloud services, federation, and the 8th open cirrus summit, San Jose, California, USA (2012)

  123. Gupta, A., Kalé, L.V., Milojicic, D., Faraboschi, P., Balle, S.M.: HPC-Aware VM Placement in Infrastructure Clouds. Paper presented at the IEEE international conference on cloud engineering (IC2E), Redwood City, CA (2013)

  124. OpenStack Open Source Cloud Computing Software. https://www.openstack.org

  125. Avetisyan, A.I., Campbell, R., Gupta, I., Heath, M.T., Ko, S.Y., Ganger, G.R., Kozuch, M.A., O’Hallaron, D., Kunze, M., Kwan, T.T., Lai, K., Lyons, M., Milojicic, D.S., Hing Yan, L., Yeng Chai, S., Ng Kwang, M., Luke, J.Y., Han, N.: Open cirrus: a global cloud computing testbed. Computer 43(4), 35–43 (2010). https://doi.org/10.1109/MC.2010.111

    Article  Google Scholar 

  126. Jin, H., Qin, H., Wu, S., Guo, X.: CCAP: a cache contention-aware virtual machine placement approach for hpc cloud. Int. J. Parallel Prog. 43(3), 403–420 (2013). https://doi.org/10.1007/s10766-013-0286-1

    Article  Google Scholar 

  127. Kim, S.-G., Eom, H., Yeom, H.: Virtual machine consolidation based on interference modeling. J. Supercomput. 66(3), 1489–1506 (2013). https://doi.org/10.1007/s11227-013-0939-2

    Article  Google Scholar 

  128. Mc Evoy, G., Mury, A.R., Schulze, B.: An analysis of definition and placement of virtual machines for high performance applications on Clouds. Concurr. Comput. Pract. Exp. 27(7), 1789–1814 (2014). https://doi.org/10.1002/cpe.3346

    Article  Google Scholar 

  129. Stillwell, M., Vivien, F., Casanova, H.: Virtual machine resource allocation for service hosting on heterogeneous distributed platforms. Paper presented at the 26th IEEE international parallel and distributed processing symposium, Shanghai, China (2012)

  130. Lucas Simarro, J.L., Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Dynamic placement of virtual machines for cost optimization in multi-cloud environments. Paper presented at the international conference on high performance computing and simulation (HPCS), Istanbul (2011)

  131. Chaisiri, S., Lee, B.-S., Niyato, D.: Optimal virtual machine placement across multiple cloud providers. Paper presented at the IEEE Asia-Pacific services computing conference, Singapore (2009)

  132. Lucas-Simarro, J.L., Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Cost optimization of virtual infrastructures in dynamic multi-cloud scenarios. Concurr. Comput. Pract. Exp. 27(9), 2260–2277 (2012). https://doi.org/10.1002/cpe.2972

    Article  Google Scholar 

  133. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  134. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer Science & Business Media, New York (2004)

    MATH  Google Scholar 

  135. Perumal, V., Subbiah, S.: Power-conservative server consolidation based resource management in cloud. Int. J. Netw. Manage 24(6), 415–432 (2014). https://doi.org/10.1002/nem.1873

    Article  Google Scholar 

  136. Hillier, M., Hillier, F.: Conventional optimization techniques. In: Sarker, R., et al. (eds.) Evolutionary Optimization. International Series in Operations Research & Management Science, pp. 3–25. Springer, New York (2002)

    Google Scholar 

  137. Hillier, F.S., Lieberman, G.J.: Introduction to operations research. Tata McGraw-Hill Education, New York (2001)

    MATH  Google Scholar 

  138. Holland, J.H.: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Ann Arbor (1975)

    MATH  Google Scholar 

  139. Dorigo, M., Birattari, M.: Ant colony optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 36–39. Springer, New York (2010)

    Google Scholar 

  140. Blum, C., Roli, A.: Hybrid metaheuristics: an introduction. In: Blum, C., Roli, A. (eds.) Hybrid Metaheuristics, pp. 1–30. Springer, New York (2008)

    MATH  Google Scholar 

  141. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theoret. Comput. Sci. 344(2), 243–278 (2005)

    MathSciNet  MATH  Google Scholar 

  142. Dowsland, K.A., Thompson, J.M.: Simulated annealing. In: Popovici, E., et al. (eds.) Handbook of Natural Computing. Springer, New York (2012)

    Google Scholar 

  143. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education, London (2003)

    MATH  Google Scholar 

  144. Henderson, D., Jacobson, S., Johnson, A.: The Theory and Practice of Simulated Annealing. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 57, pp. 287–319. Springer, New York (2003)

    Google Scholar 

  145. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. In. Technical Report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)

  146. Karaboga, D., Basturk, B.: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: Proceedings of the International Conference on 12th International Fuzzy Systems Association World Congress. Springer, New York (2007)

  147. Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986)

    MathSciNet  MATH  Google Scholar 

  148. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech concurrent computation program, C3P Report 826, 1989 (1989)

  149. Donoso, Y., Fabregat, R.: Multi-objective optimization in computer networks using metaheuristics. Auerbach Publications, Boca Raton (2016)

    Google Scholar 

  150. Yu, X., Gen, M.: Introduction to evolutionary algorithms. Springer, New York (2010)

    MATH  Google Scholar 

  151. Merz, P., Freisleben, B.: A comparison of memetic algorithms, tabu search, and ant colonies for the quadratic assignment problem. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406) 1999, pp. 2063–2070. IEEE

  152. Elbeltagi, E., Hegazy, T., Grierson, D.: Comparison among five evolutionary-based optimization algorithms. Adv. Eng. Inform. 19(1), 43–53 (2005)

    Google Scholar 

  153. Yue, W., Chen, Q.: Dynamic placement of virtual machines with both deterministic and stochastic demands for green cloud computing. Math. Probl. Eng. (2014). https://doi.org/10.1155/2014/613719

    Article  Google Scholar 

  154. Ming, C., Hui, Z., Ya-Yunn, S., Xiaorui, W., Guofei, J., Yoshihira, K.: Effective VM sizing in virtualized data centers. Paper presented at the IFIP/IEEE international symposium on integrated network management, Dublin (2011)

  155. Benson, T., Akella, A., Maltz, D.A.: Network traffic characteristics of data centers in the wild. Paper presented at the 10th ACM SIGCOMM conference on Internet measurement, Melbourne, Australia (2010)

  156. Kandula, S., Sengupta, S., Greenberg, A., Patel, P., Chaiken, R.: The nature of data center traffic: measurements & analysis. Paper presented at the 9th ACM SIGCOMM internet measurement conference, Chicago, Illinois, USA (2009)

  157. Jin, H., Pan, D., Xu, J., Pissinou, N.: Efficient VM placement with multiple deterministic and stochastic resources in data centers. Paper presented at the IEEE Global Communications Conference (GLOBECOM), Anaheim, CA (2012)

  158. Meng, W., Xiaoqiao, M., Li, Z.: Consolidating virtual machines with dynamic bandwidth demand in data centers. Paper presented at the IEEE INFOCOM, Shanghai (2011)

  159. Isci, C., Hanson, J.E., Whalley, I., Steinder, M., Kephart, J.O.: Runtime Demand Estimation for effective dynamic resource management. Paper presented at the IEEE Network Operations and Management Symposium (NOMS), Osaka (2010)

  160. Beloglazov, A.: Energy-efficient management of virtual machines in data centers for cloud computing. The University of Melbourne, Parkville (2013)

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Institute of Research Management & Services (IPPP), University of Malaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Talebian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebian, H., Gani, A., Sookhak, M. et al. Optimizing virtual machine placement in IaaS data centers: taxonomy, review and open issues. Cluster Comput 23, 837–878 (2020). https://doi.org/10.1007/s10586-019-02954-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-019-02954-w

Keywords

Navigation