Skip to main content

Advertisement

Log in

A memetic grouping genetic algorithm for cost efficient VM placement in multi-cloud environment

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The placement of a virtual machine in cloud computing generates a cost derived from consuming the energy of the allocated network elements. In this paper, we present an optimization model for effective virtual machine placement in the heterogeneous multi-cloud systems by considering peak demand time and geographical position of allocated resources, with target of minimizing the energy cost of allocated network elements. We also build a dynamic energy model for cloud physical machines and communication components. Then, we propose a correlation aware virtual machine placement algorithm, namely MGGAVP, with these issues in mind. The algorithm is based on the hybridization of the Grouping Genetic Algorithm and Hill-climbing and extended for the multi-cloud environment. The results of simulation reveal that the proposed algorithm can have significantly better performance than the three comparison algorithms with the energy saving of 51.93% average performance promotion and energy cost of 70.41% average performance promotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Panda, S.K., Gupta, I., Jana, P.K.: Task scheduling algorithms for multi-cloud systems: allocation-aware approach. Inf. Syst. Front. (2017). https://doi.org/10.1007/s10796-017-9742-6

    Article  Google Scholar 

  2. Durao, F., Carvalho, J.F.S., Fonseka, A., Garcia, V.C.: A systematic review on cloud computing. J. Supercomput. 68, 1321–1346 (2015)

    Article  Google Scholar 

  3. Zhu, J., Li, D., Wu, J., Liu, H., Zhang, Y., Zhang, J.: Towards bandwidth guarantee in multi-tenancy cloud computing networks. In: Proceedings of the IEEE International Conference on Network Protocols (2012). https://doi.org/10.1109/icnp.2012.6459986

  4. Panda, S.K., Pande, S.K., Das, S.: Task partitioning scheduling algorithms for heterogeneous multi-cloud environment. Arab. J. Sci. Eng. (2018). https://doi.org/10.1007/s13369-017-2798-2

    Article  Google Scholar 

  5. Li, J., Qiu, M., Ming, Z., Quan, G., Qin, X., Gu, Z.: Online optimization for scheduling preemptable tasks on IaaS cloud systems. J. Parallel Distrib. Comput. 72, 666–677 (2012)

    Article  Google Scholar 

  6. Assis, M., Bittencourt, L.: A survey on cloud federation architectures: identifying functional and non-functional properties. J. Netw. Comput. Appl. (2016). https://doi.org/10.1016/j.jnca.2016.06.014

    Article  Google Scholar 

  7. Toosi, A.N., Calheiros, R.N., Buyya, R.: Interconnected cloud computing environments: challenges, taxonomy, and survey. ACM Comput. Surv. (2014). https://doi.org/10.1145/2593512

    Article  Google Scholar 

  8. Heilig, L., Buyya, R., Voß, S.: Location-aware brokering for consumers in multi-cloud computing environments. J. Netw. Comput. Appl. (2017). https://doi.org/10.1016/j.jnca.2017.07.010

    Article  Google Scholar 

  9. Chun, S., Choi, B.: Service models and pricing schemes for cloud computing. Cluster Comput. (2013). https://doi.org/10.1007/s10586-013-0296-1

    Article  Google Scholar 

  10. Gelazanskas, L., Gamage, A.A.K.: Demand side management in smart grid: a review and proposals for future direction. Sustain. Cities Soc. 11, 22–30 (2014)

    Article  Google Scholar 

  11. Kostková, K., Omelina, L., Kycina, P., Jamrich, P.: An introduction to load management. Electric Power Syst. Res. 95, 184–191 (2013)

    Article  Google Scholar 

  12. Bergaentzle, C., Clastres, C., Khalfallah, N.: Demand-side management and European environmental and energy goals: an optimal complementary approach. Energy Policy 67, 858–869 (2014)

    Article  Google Scholar 

  13. Gupta, M.K., Tarachand, A.: Resource-aware virtual machine placement algorithm for IaaS cloud. J Supercomput. 74, 122–140 (2018)

    Article  Google Scholar 

  14. Jamali, S., Malektaji, S.: Improving grouping genetic algorithm for virtual machine placement in cloud data centers. In: Proceedings of the 4th International Conference on Computer and Knowledge Engineering (2014). https://doi.org/10.1109/iccke.2014.6993461

  15. Ferdaus, H., Murshed, M., Buyya, R., Calheiros, R.N.: Virtual machine consolidation in cloud data centers using ACO metaheuristic. In: Proceedings of the Euro-Par 2014 parallel processing (2014). https://doi.org/10.1007/978-3-319-09873-9_26

  16. Tang, Z., Mo, Y., Li, K., Li, K.: Dynamic forecast scheduling algorithm for virtual machine placement in cloud computing. J Supercomput. (2014). https://doi.org/10.1007/s11227-014-1227-5

    Article  Google Scholar 

  17. Li, W., Tordsson, J., Elmroth, E.: Virtual machine placement for predictable and time constraint peak loads. In: Proceedings of the International Workshop on Grid Economics and Business Models (2012). https://doi.org/10.1007/978-3-642-28675-9_9

  18. Agrawal, S., Bose, S.K., Sundarrajan, S.: Grouping genetic algorithm for solving the server consolidation problem with conflicts. Genet. Evolut. Comput. (2009). https://doi.org/10.1145/1543834.1543836

    Article  Google Scholar 

  19. Dupont, C., Giuliani, G., Hermenier, F., Schulze, T., Somov, A.: An energy aware framework for virtual machine placement in cloud federated data centers. Future Energy Syst. (2012). https://doi.org/10.1145/2208828.2208832

    Article  Google Scholar 

  20. Fang, W., Liang, X., Li, S., Chiaraviglio, L., Xiong, N.: VMPlanner: optimizing virtual machine placement and traffic flow routing to reduce network power costs in cloud data centers. Comput. Netw. (2013). https://doi.org/10.1016/j.comnet.2012.09.008

    Article  Google Scholar 

  21. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurr. Comput. 25, 256 (2011). https://doi.org/10.1002/cpe.1867

    Article  Google Scholar 

  22. Beloglazov, A., Buyya, R.: Adaptive threshold-based approach for energy-efficient consolidation of virtual machines in cloud data centers. In: Proceedings of the Middleware for Grids, Clouds and e-Science, ACM (2010). https://doi.org/10.1145/1890799.1890803

  23. Li, X.K., Gut, C.H., Yang, Z.P., Chang, Y.H.: Virtual machine placement strategy based on discrete firefly algorithm in cloud environments. In: Proceedings of the Wavelet Active Media Technology and Information Processing (2015). https://doi.org/10.1109/iccwamtip.2015.7493907

  24. Xu, G., Dong, Y., Fu, X.: VMs placement strategy based on distributed parallel ant colony optimization algorithm. Appl. Math. 9, 873–881 (2015)

    Google Scholar 

  25. Hogade, N., Siegel, H.J.: Minimizing energy costs for geographically distributed heterogeneous datac. In: Proceedings of the IEEE Transactions on Sustainable Computing (2018). https://doi.org/10.1109/tsusc.2018.2822674

  26. Zhao, J., Ding, Y., Xu, G.: A location selection policy of live virtual machine migration for power saving and load balancing. Sci. World J. (2013). https://doi.org/10.1155/2013/492615

    Article  Google Scholar 

  27. Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A multi-objective ant colony system algorithm for virtual machine placement in cloud computing. J. Comput. Syst. Sci. 79, 1230–1242 (2013)

    Article  MathSciNet  Google Scholar 

  28. Suseel, B.B.J., Jeyakrishnan, V.: A multi-objective hybrid ACO-PSO optimization algorithm for virtual machine placement in cloud computing. J. Res. Eng. Technol. (2014). https://doi.org/10.15623/ijret.2014.0304084

    Article  Google Scholar 

  29. Wang, B., Song, Y., Cui, X., Cao, J.: Mathematical programming for server consolidation in cloud data centers. In: Proceedings of the 4th International Conference on Systems and Informatics (2017). http://doi.org/10.1109/ICSAI.2017.8248374

  30. Xu, C., Wang, K., Li, P., Xia, R., Guo, S., Guo, M.: Renewable energy-aware big data analytics in geo-distributed data centers with reinforcement learning. In: Proceedings of the IEEE Transactions on Network Science and Engineering (2018). http://doi.org/10.1109/TNSE.2018.2813333

  31. Xu, J., Fortes, J.A.B.: Multi-objective virtual machine placement in virtualized data center environments. Green Comput. Commun. (2010). https://doi.org/10.1109/GreenCom-CPSCom.2010.137

    Article  Google Scholar 

  32. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Gener. Comput. Syst. 28, 755–768 (2012)

    Article  Google Scholar 

  33. Li, X., Li, X., Qian, Z., Lu, S., Wu, J.: Energy efficient virtual machine placement algorithm with balanced and improved resource utilization in a data center. Math. Comput. Model. (2013). https://doi.org/10.1016/j.mcm.2013.02.003

    Article  MathSciNet  Google Scholar 

  34. Zahedi Fard, S.Y., Ahmadi, M.R., Adabi, S.: A dynamic VM consolidation technique for QoS and energy consumption in cloud environment. J Supercomput. (2017). https://doi.org/10.1007/s11227-017-2016-8

    Article  Google Scholar 

  35. Zhao, J., Wu, C., Li, Z.: Cost minimization in multiple IaaS clouds: a double auction approach. Comput. Sci. Game Theor. (2013). http://arxiv.org/abs/1308.0841. Accessed 8 Dec 2013

  36. Gu, L., Zeng, D., Barnawi, A., Guo, S., Stojmenovic, I.: Optimal task placement with QoS constraints in geo-distributed data centers using DVFS. IEEE Trans. Comput. 64, 2049–2059 (2015)

    Article  MathSciNet  Google Scholar 

  37. Nazir, B.: QoS aware VM placement and migration for hybrid cloud infrastructure. J. Supercomput. (2018). https://doi.org/10.1007/s11227-017-2071-1

    Article  Google Scholar 

  38. Li, H., Wu, C., Li, Z., Zhang, Z., Lau, F.C.M.: Dynamic pricing and profit maximization for the cloud with geo-distributed data centers. In: Proceedings of the IEEE Conference on Computer Communications (2014). https://doi.org/10.1109/infocom.2014.6847931

  39. Dalvandi, A., Gurusamy, M., Chua, K.: Time-aware VMFlow placement, routing and migration for power efficiency in data centers. IEEE Trans. Netw. Serv. Manage. 12, 349–362 (2015)

    Article  Google Scholar 

  40. Simarro, J., Vozmediano, R., Montero, R. Llorente, I.: Dynamic placement of virtual machines for cost optimization in multi-cloud environments. In: Proceedings of the International Conference on High Performance Computing & Simulation (2011). https://doi.org/10.1109/hpcsim.2011.5999800

  41. Khosravi, A., Buyya, R.: Energy and carbon footprint aware management of geo-distributed cloud data centers: a taxonomy, state of art, and future directions. Sustain. Dev. (2017). https://doi.org/10.4018/978-1-5225-2013-9.ch002

    Article  Google Scholar 

  42. Silva, P., Perez, C.: An efficient communication aware heuristic for multiple cloud application placement. In: Proceedings of the European Conference on Parallel Processing (2017). https://doi.org/10.1007/978-3-319-64203-1_27

  43. Kumar, K.S.S., Jaisankar, N.: Towards data centre resource scheduling via hybrid cuckoo search algorithm in multi-cloud environment. Int. J. Intell. Enterp. (2017). https://doi.org/10.1504/ijie.2017.087008

    Article  Google Scholar 

  44. Liu, F., Luo, F., Niu, Y.: Cost-effective service provisioning for hybrid cloud applications. Mob. Netw. Appl. (2017). https://doi.org/10.1007/s11036-016-0738-0

    Article  Google Scholar 

  45. Zhu, W., Zhuang, Y., Zhang, L.: A three-dimensional virtual resource scheduling method for energy saving in cloud computing. Future Gener. Comput. Syst. (2017). https://doi.org/10.1016/j.future.2016.10.034

    Article  Google Scholar 

  46. Lin, W., Wang, W., Wu, W., Pang, X., Liu, B., Zhang, Y.: A heuristic task scheduling algorithm based on server power efficiency model in cloud environments. Sustain. Comput. (2018). https://doi.org/10.1016/j.suscom.2017.10.007

    Article  Google Scholar 

  47. Mao, L., Li, Y., Peng, G., Xu, X., Lin, W.: A multi-resource task scheduling algorithm for energy-performance trade-offs in green clouds. Sustain. Comput. (2018). https://doi.org/10.1016/j.suscom.2018.05.003

    Article  Google Scholar 

  48. Mehta, D., Sullivan, B.O., Simonis, H.: Energy cost management for geographically distributed data centres under time-variable demands and energy prices. In: Proceedings of the IEEE/ACM 6th International Conference on Utility and Cloud Computing (2013). https://doi.org/10.1109/ucc.2013.22

  49. Khosravi, A., Andrew, L.H., Buyya, R.: Dynamic VM placement method for minimizing energy and carbon cost in geographically distributed cloud data centers. In: Proceedings of the IEEE Transactions on Sustainable Computing (2017). https://doi.org/10.1109/tsusc.2017.2709980

  50. Lagana, D., Mastroianni, C., Meo, M., Renga, D.: Reducing the operational cost of cloud data centers through renewable energy. Algorithms (2018). https://doi.org/10.3390/a11100145

    Article  MATH  Google Scholar 

  51. Arianyan, E., Taheri, H., Khoshdel, V.: Novel fuzzy multi objective DVFS-aware consolidation heuristics for energy and SLA efficient resource management in cloud data centers. J. Netw. Comput. Appl. (2016). https://doi.org/10.1016/j.jnca.2016.09.016

    Article  Google Scholar 

  52. Amoon, M., Tobely, T.E.E.: A green energy-efficient scheduler for cloud data centers. Clust. Comput. (2018). https://doi.org/10.1007/s10586-018-2028-z

    Article  Google Scholar 

  53. Lucas-Simarro, J.L., Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Cost optimization of virtual infrastructures in dynamic multi-cloud scenarios. Concurr. Comput. (2012). https://doi.org/10.1002/cpe.2972

    Article  Google Scholar 

  54. Wood, T., Shenoy, P., Ramakrishnan, K.K., Merwe, J.: CloudNet: dynamic pooling of cloud resources by live wan migration of virtual machines. IEEE/ACM Trans. Netw. 23, 1568–1583 (2015)

    Article  Google Scholar 

  55. Gupta, M.K., Jain, A., Amgoth, T.: Power and resource-aware virtual machine placement for IaaS cloud. Sustain. Comput. (2018). https://doi.org/10.1016/j.suscom.2018.07.001

    Article  Google Scholar 

  56. Liu, L., Zheng, S., Yu, H., Anand, V., Xu, D.: Correlation-based virtual machine migration in dynamic cloud environment. Photon Netw. Commun. (2016). https://doi.org/10.1007/s11107-015-0539-6

    Article  Google Scholar 

  57. Sun, G., Liao, D., Zhao, D., Xu, Z., Yu, H.: Live migration for multiple correlated virtual machines in cloud-based data centers. J. Serv. Comput. (2015). https://doi.org/10.1109/TSC.2015.2477825

    Article  Google Scholar 

  58. Alshraideh, M., Mahafzah, B., Al-Sharaeh, S.: A multiple-population genetic algorithm for branch coverage test data generation. Softw. Qual. J. 19, 489–513 (2011)

    Article  Google Scholar 

  59. Josepha, C.T., Chandrasekaran, K., Cyriac, R.: A novel family genetic approach for virtual machine allocation. Procedia Comput. Sci. (2015). https://doi.org/10.1016/j.procs.2015.02.090

    Article  Google Scholar 

  60. Anand, A.: Adaptive virtual machine placement supporting performance SLAs. Dissertation, Super Computer Education and Research Centre Indian Institute of Science Bangalore. 10-23 (2013)

  61. Masdari, M., Nabavi, S.S., Ahmadi, V.: An overview of virtual machine placement schemes in cloud computing. J. Netw. Comput. Appl. (2016). https://doi.org/10.1016/j.jnca.2016.01.011

    Article  Google Scholar 

  62. Gahlawat, M., Sharma, P.: Survey of virtual machine placement in federated clouds. In: Proceedings of the IEEE International Advance Computing Conference (2014). https://doi.org/10.1109/iadcc.2014.6779415

  63. Barzkar, A., Hosseini, S.M.H.: A novel peak load shaving algorithm via real-time battery scheduling for residential distributed energy storage systems. Int. J. Energy Res. (2018). https://doi.org/10.1002/er.4010

    Article  Google Scholar 

  64. Tordsson, J., Montero, R.S., Vozmediano, R.M., Llorente, I.M.: Cloud brokering mechanisms for optimized placement of virtual machines across multiple providers. Future Gener. Comput. Syst. (2012). https://doi.org/10.1016/j.future.2011.07.003

    Article  Google Scholar 

  65. Theja, P.R., Babu, S.K.K.: An adaptive genetic algorithm based robust QoS oriented green computing scheme for VM consolidation in large scale cloud infrastructures. J. Sci. Technol. (2014). https://doi.org/10.17485/ijst/2015/v8i27/79175

    Article  Google Scholar 

  66. Tsakalozos, K., Verroios, V., Roussopoulos, M., Delis, A.: Live VM migration under time- constraints in share-nothing IaaS-clouds. IEEE Trans. Parallel Distrib. Syst. (2017). https://doi.org/10.1109/tpds.2017.2658572

    Article  Google Scholar 

  67. Pires, F.L., Baran, B.: Virtual machine placement literature review. Polytechnic School National University of Asuncion Tech. Rep. https://sites.google.com/site/fiopezpires/ (2014). Accessed 4 June 2014

  68. Jonardi, E., Oxley, M.A., Pasricha, S., Maciejewski, A.A., Siegel, H.J.: Energy cost optimization for geographically distributed heterogeneous data centers. In: Proceedings of the Sixth International Green and Sustainable Computing Conference (2015). https://doi.org/10.1109/igcc.2015.7393677

  69. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research challenges. Internet Serv. Appl. (2010). https://doi.org/10.1007/s13174-010-0007-6

    Article  Google Scholar 

  70. Baker, T., Al-Dawsari, B., Tawfik, H., Reid, R., Ngoko, Y.: GreeDi: an energy efficient routing algorithm for big data on cloud. AdHoc Netw. (2015). https://doi.org/10.1016/j.adhoc.2015.06.008

    Article  Google Scholar 

  71. Forestiero, A., Mastroianni, Meo, M., Papuzzo, G., Sheikhalishahi, M.: Hierarchical approach for efficient workload management in geo-distributed data centers. In: Proceedings of the IEEE Transactions on Green Communications and Networking (2017). http://doi.org/10.1109/TGCN.2016.2603586

  72. Speitkamp, B., Bichler, M.: A mathematical programming approach for server consolidation problems in virtualized data centers. J. Serv. Comput. (2010). https://doi.org/10.1109/TSC.2010.25

    Article  Google Scholar 

  73. Diaz, J.L., Entrialgo, J., Garcia, M., Garcia, J., Garcia, D.F.: Optimal allocation of virtual machines in multi-cloud environments with reserved and on-demand pricing. J Future Gener. Comput. Syst. 71, 129–144 (2017)

    Article  Google Scholar 

  74. Renders, J.M., Bersini, H.: Hybridizing genetic algorithms with hill-climbing methods for global optimization: two possible ways. In: Proceedings of The First IEEE Conference on Evolutionary Computation (1994). https://doi.org/10.1109/icec.1994.349948

  75. Le, K., Bianchini, R., Zhang, J., Jaluria, Y., Meng, J., Nguyen, D.: Reducing electricity cost through virtual machine placement in high performance computing clouds. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (2011). https://doi.org/10.1145/2063384.2063413

  76. Thirumalaiselvan, C., Venkatachalam, V.: A strategic performance of virtual task scheduling in multi cloud environment. Clust. Comput. (2017). https://doi.org/10.1007/s10586-017-1268-7

    Article  Google Scholar 

  77. Anand, A., Lakshmi, J., Nandy, S.K.: Virtual machine placement optimization supporting performance SLAs. In: Proceedings of the Cloud Computing Technology and Science (2013). http://doi.org/10.1109/CloudCom.2013.46

  78. Zheng, Q., Li, R., Li, X., Shah, N., Zhang, J., Tian, F., Chao, K.M., Li, J.: Virtual machine consolidated placement based on multi objective biogeography-based optimization. J. Future Gener. Comput. Syst. (2016). https://doi.org/10.1016/j.future.2015.02.010

    Article  Google Scholar 

  79. Wilcox, D., McNabb, A., Seppi, K.: Solving virtual machine packing with a reordering grouping genetic algorithm. Evolut. Comput. (2011). https://doi.org/10.1109/cec.2011.5949641

    Article  Google Scholar 

  80. Vhansure, F., Deshmukh, A., Sumathy, S.: Load balancing in multi cloud computing environment with genetic algorithm. Mater. Sci. Eng. (2017). https://doi.org/10.1088/1757-899x/263/4/042010

    Article  Google Scholar 

  81. Hu, H., Li, Z., Hu, H., Chen, J., Ge, J., Li, C., Chang, V.: Multi-objective scheduling for scientific workflow in multi cloud environment. J. Netw. Comput. Appl. (2018). https://doi.org/10.1016/j.jnca.2018.03.028

    Article  Google Scholar 

  82. Hong, C.: A grouping genetic algorithm for virtual machine placement in cloud computing. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (2017). https://doi.org/10.1007/978-3-319-59288-6_43

  83. Panda, S.K., Jana, P.K.: Efficient task scheduling algorithms for heterogeneous multi-cloud environment. J. Supercomput. (2015). https://doi.org/10.1007/s11227-014-1376-6

    Article  Google Scholar 

  84. Panda, S.K., Jana, P.K.: Normalization-based task scheduling algorithms for heterogeneous multi-cloud environment. Inf. Syst. Front. 20, 373–399 (2016)

    Article  Google Scholar 

  85. Aldossary, M., Djemame, K.: Performance and energy-based cost prediction of virtual machines live migration in clouds. In: Proceedings of the 8th International Conference on Cloud Computing and Services Science (2018). https://doi.org/10.5220/0006682803840391

  86. Sharma, N.K., Sharma, P., Guddeti, R.M.R.: Energy efficient quality of service aware virtual machine migration in cloud computing. In: Proceedings of the 4th International Conference on Recent Advances in Information Technology (2018). https://doi.org/10.1109/rait.2018.8389047

  87. Liu, Z., Lin, M., Wierman, A., Low. S., Andrew, L.L.H.: Greening geographical load balancing. In: Proceedings of the SIGMETRICS ‘11 ACM SIGMETRICS Joint International Conference on Measurement and Modeling of Computer Systems (2011). https://doi.org/10.1145/1993744.1993767

  88. Fiandino, C., Bouvry, P.: Performance and energy efficiency metrics for communication systems of cloud computing data centers. In: Proceedings of the IEEE Transactions on Cloud Computing, pp. 99–113 (2015)

  89. Kusic, D., Kephart, J.O., Hanson, J.E., Kandasamy, N., Jiang, G.: Power and performance management of virtualized computing environments via look ahead control. Clust. Comput. (2009). https://doi.org/10.1007/s10586-008-0070-y

    Article  Google Scholar 

  90. Kliazovich, D., Bouvry, P., Khan, S.U.: Dens: data center energy-efficient network-aware scheduling. Clust. Comput. (2013). https://doi.org/10.1007/s10586-011-0177-4

    Article  Google Scholar 

  91. Wei, J., Zhou, A., Yuan, J., Yang, F.: AIMING: resource allocation with latency awareness for federated-cloud applications. Wirel. Commun. Mob. Comput. (2018). https://doi.org/10.1155/2018/4593208

    Article  Google Scholar 

  92. Shah, S.A.R., Jaikar, A.H., Noh, S.Y.: A performance analysis of precopy, postcopy and hybrid live VM migration algorithms in scientific cloud computing environment. In: Proceedings of the International Conference on High Performance Computing & Simulation (2015). https://doi.org/10.1109/hpcsim.2015.7237044

  93. Verma, A., Ahuja, P., Neogi, A.: pMapper: power and migration cost aware application placement in virtualized systems. In: Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware, pp. 243–264 (2008)

  94. Ferdaus, M.H., Calheiros, R.N., Murshed, M., Buyya, R.: Network-aware virtual machine placement and migration in cloud data centers. In: Baghchi, S. (ed.) Emerging Research in Cloud Distributed Computing Systems, pp. 42–91. IGI Global, Pennsylvania (2015)

    Chapter  Google Scholar 

  95. Alshraideh, M., Mahafzah, B., Eyal Salman, H., Salah, I.: Using genetic algorithm as test data generator for stored PL/SQL program units. J. Softw. Eng. Appl. 6, 65–73 (2013)

    Article  Google Scholar 

  96. Burke, E.K., Newall, J.R., Weare, R.E.: A memetic algorithm for university exam timetabling. In: Proceedings of the Practice and Theory of Automated Timetabling (2005). https://doi.org/10.1007/3-540-61794-9_63

  97. Falkenauer, E., Delchambre, A.: A genetic algorithm for bin packing and line balancing. Robot. Autom. (1992). https://doi.org/10.1109/ROBOT.1992.220088

    Article  Google Scholar 

  98. Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. J. Heuristics 2, 5–30 (1996)

    Article  Google Scholar 

  99. Falkenauer, E.: Genetic Algorithms and Grouping Problems. Wiley, Hoboken (1998)

    MATH  Google Scholar 

  100. Rahnamayan, Sh, Tizhoosh, H.R., Salama, M.M.A.: A novel population initialization method for accelerating evolutionary algorithms. Comput. Math. Appl. (2007). https://doi.org/10.1016/j.camwa.2006.07.013

    Article  MathSciNet  MATH  Google Scholar 

  101. Paul, P.V., Moganarangan, N., Sampath Kumar, S., Raju, R., Vengattaraman, T., Dhavachelvan, P.: Performance analyses over population seeding techniques of the permutation-coded genetic algorithm: an empirical study based on traveling salesman problems. Appl. Soft Comput. (2015). https://doi.org/10.1016/j.asoc.2015.03.038

    Article  Google Scholar 

  102. Bajer, D., Martinovi, G., Brest, J.: A population initialization method for evolutionary algorithms based on clustering and cauchy deviates. Expert Syst. Appl. (2016). https://doi.org/10.1016/j.eswa.2016.05.009

    Article  Google Scholar 

  103. Zhong, J., Hu, X., Gu, M., Zhang, J.: Comparison of performance between different selection strategies on simple genetic algorithms. In: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and automation (2005). https://doi.org/10.1109/cimca.2005.1631619

  104. Miller, B.L., Goldberg, D.E.: Genetic algorithms, tournament selection, and the effects of noise. Complex Syst. 9, 193–212 (1995)

    MathSciNet  Google Scholar 

  105. Razali, N.M., Geraghty, J.: Genetic algorithm performance with different selection strategies in solving TSP. In: Proceedings of the World Congress on Engineering. London, UK, 2011

  106. Blickle, T., Thiele, L.: A comparison of selection schemes used in genetic algorithms. TIK-Report, Zurich (1995)

    Google Scholar 

  107. Tsang, E., Voudouris, C.: Fast local search and guided local search and their application to British telecom’s workforce scheduling problem. Op. Res. Lett. 20, 119–127 (1997)

    Article  Google Scholar 

  108. Al-Adwan, A., Sharieh, A., Mahafzah, B.: Parallel heuristic local search algorithm on OTIS hyper hexa-cell and OTIS mesh of trees optoelectronic architectures. Appl. Intell. 49, 661–688 (2019). https://doi.org/10.1007/s10489-018-1283-2

    Article  Google Scholar 

  109. Naldi, M.C., Campello, R.J.G.B., Hruschka, E.R., Carvalho, A.C.P.L.F.: Efficiency issues of evolutionary k-means. Appl. Soft Comput. 11, 1938–1952 (2011)

    Article  Google Scholar 

  110. Amazon EC2 instance types. http://aws.amazon.com/ec2/. Accessed 7 July 2018

  111. Google Cloud Platform Price. https://cloud.google.com/pric-ing/. Accessed 16 Sept 2018

  112. Microsof Azure Price. https://azure.microsof.com/en-us/pric-ing/. Accessed 20 Oct 2018

  113. EIA. (2012). Electric power monthly. US Energy Information Administration http://www.eia.gov/electricity/monthly/pdf/epm.pdf. Accessed 7 Jan 2012

  114. Juarez, F., Ejarque, J., Badia, R.M.: Dynamic energy-aware scheduling for parallel task-based application in cloud computing. Future Gener. Comput. Syst. 25, 256 (2016). https://doi.org/10.1016/j.future.2016.06.029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Sabaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashida, S.Y., Sabaei, M., Ebadzadeh, M.M. et al. A memetic grouping genetic algorithm for cost efficient VM placement in multi-cloud environment. Cluster Comput 23, 797–836 (2020). https://doi.org/10.1007/s10586-019-02956-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-019-02956-8

Keywords

Navigation