Skip to main content
Log in

Elliptic curve Diffie–Hellman cryptosystem in big data cloud security

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Big data require cloud that provides dynamically expanding data storage accessed through the Internet. The outsourcing data in the cloud for storing makes the user data management easier and reduces the cost of maintaining data. Still organizations are not confident to store their data in the cloud, because of security and privacy concerns. However, existing encryption methods are able to protect data confidentiality, but it has some drawbacks of access patterns can also leak sensitive information. The proposed system uses an Elliptic curve with Diffie–Hellman (ECDH) algorithm for encryption and decryption of data to improve the data security in the cloud. This algorithm reduced the computational complexity and encrypted data efficiently. In experimental analysis, the performance of proposed ECDH is calculated using evaluation parameters such as encryption time, decryption time, computation overhead and key generation time. The proposed ECDH algorithm has approximately 70% better performance in terms of encryption time than existing methods such as RSA, MRSA and MRSAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Salem, M.Z., Sabbeh, S.F., Tarek, E.L.: An efficient privacy preserving public auditing mechanism for secure cloud storage. Int. J. Appl. Eng. Res. 12(6), 1093–1101 (2017)

    Google Scholar 

  2. Bhatt Agarwal, R.: A technological review on scheduling algorithm to improve performance of cloud computing environment. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 8(6), 166–172 (2019)

    Google Scholar 

  3. Zhou, L., Varadharajan, V., Hitchens, M.: Trust enhanced cryptographic role-based access control for secure cloud data storage. IEEE Trans. Inf. Forensics Secur. 10(11), 2381–2395 (2015)

    Article  Google Scholar 

  4. Wang, Q., Wang, C., Ren, K., Lou, W., Li, J.: Enabling public auditability and data dynamics for storage security in cloud computing. IEEE Trans. Parallel Distrib. Syst. 22(5), 847–859 (2011)

    Article  Google Scholar 

  5. Panwar, N., Negi, S., Rauthan, M.S., Aggarwal, M.A.Y.A.N.K., Jain, P.: An enhanced scheduling approach with cloudlet migrations for resource intensive applications. J. Eng. Sci. Technol. 13(8), 2299–2317 (2018)

    Google Scholar 

  6. Aggrawal, M., Kumar, N., Kumar, R.: Optimized cost model with optimal disk usage for cloud. In: Aggarwal, V.B., Bhatnagar, V., Mishra, D.K. (eds.) Big Data Analytics, pp. 481–485. Springer, Singapore (2018)

    Chapter  Google Scholar 

  7. Song, W., Cui, Y., Peng, Z.: A full-text retrieval algorithm for encrypted data in cloud storage applications. In: Li, J., Ji, H., Zhao, D., Feng, Y. (eds.) Natural Language Processing and Chinese Computing, pp. 229–241. Springer, Cham (2015)

    Chapter  Google Scholar 

  8. Cheng, Y., Wang, Z.Y., Ma, J., Wu, J.J., Mei, S.Z., Ren, J.C.: Efficient revocation in ciphertext-policy attribute-based encryption based cryptographic cloud storage. J. Zhejiang Univ. Sci. C 14(2), 85–97 (2013)

    Article  Google Scholar 

  9. Srisakthi, S. Shanthi, A.P.: Design of a secure encryption model (SEM) for cloud data storage using hadamard transforms. Wirel. Pers. Commun. 100, 1727–1741 (2018)

    Article  Google Scholar 

  10. Wang, W., Chen, L., Zhang, Q.: Outsourcing high-dimensional healthcare data to cloud with personalized privacy preservation. Comput. Netw. 88, 136–148 (2015)

    Article  Google Scholar 

  11. He, X.M., Wang, X.S., Li, D., Hao, Y.N.: Semi-homogenous generalization: improving homogenous generalization for privacy preservation in cloud computing. J. Comput. Sci. Technol 31(6), 1124–1135 (2016)

    Article  MathSciNet  Google Scholar 

  12. Liu, H., Ning, H., Xiong, Q., Yang, L.T.: Shared authority based privacy-preserving authentication protocol in cloud computing. IEEE Trans. Parallel Distrib. Syst. 26(1), 241–251 (2015)

    Article  Google Scholar 

  13. Kanna, G.P., Vasudevan, V.: A fully homomorphic–elliptic curve cryptography based encryption algorithm for ensuring the privacy preservation of the cloud data. Clust. Comput. 22, 9561–9569 (2019)

    Article  Google Scholar 

  14. Wang, Z., Cao, C., Yang, N., Chang, V.: ABE with improved auxiliary input for big data security. J. Comput. Syst. Sci. 89, 41–50 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang, K., Han, Q., Li, H., Zheng, K., Su, Z., Shen, X.: An efficient and fine-grained big data access control scheme with privacy-preserving policy. IEEE Internet Things J. 4(2), 563–571 (2017)

    Article  Google Scholar 

  16. Yang, C.Y., Huang, C.T., Wang, Y.P., Chen, Y.W., Wang, S.J.: File changes with security proof stored in cloud service systems. Pers. Ubiquit. Comput. 22(1), 45–53 (2018)

    Article  Google Scholar 

  17. Stergiou, C., Psannis, K.E.: Efficient and secure BIG data delivery in cloud computing. Multimed. Tools Appl. 76(21), 22803–22822 (2017)

    Article  Google Scholar 

  18. Thangavel, M., Varalakshmi, P.: Enhanced DNA and ElGamal cryptosystem for secure data storage and retrieval in cloud. Clust. Comput. 21, 1411–1437 (2018)

    Article  Google Scholar 

  19. He, D., Kumar, N., Wang, H., Wang, L., Choo, K.K.R.: Privacy-preserving certificate less provable data possession scheme for big data storage on cloud. Appl. Math. Comput. 314, 31–43 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Song, W., Wang, B., Wang, Q., Peng, Z., Lou, W., Cui, Y.: A privacy-preserved full-text retrieval algorithm over encrypted data for cloud storage applications. J. Parallel Distrib. Comput. 99, 14–27 (2017)

    Article  Google Scholar 

  21. Gnanaprakasam, T., Rajivkannan, A.: Optimal Ecc based dual encryption technique for data security in cloud. Int. J. Adv. Eng. Technol. VII(II) (2016)

  22. Tewari, A., Gupta, B.B.: Cryptanalysis of a novel ultra-lightweight mutual authentication protocol for IoT devices using RFID tags. J. Supercomput. 73(3), 1085–1102 (2017)

    Article  Google Scholar 

  23. Gupta, B.B., Agrawal, D.P.: Handbook of research on cloud computing and big data applications in IoT. In: IGI Global. (2019). https://doi.org/10.4018/978-1-5225-8407-0

  24. Olakanmi, O.O., Dada, A.: An efficient privacy-preserving approach for secure verifiable outsourced computing on untrusted platforms. Int. J. Cloud Appl. Comput. (IJCAC) 9(2), 79–98 (2019)

    Google Scholar 

  25. Azad, P., Navimipour, N.J.: An energy-aware task scheduling in the cloud computing using a hybrid cultural and ant colony optimization algorithm. Int. J. Cloud Appl. Comput. (IJCAC) 7(4), 20–40 (2017)

    Google Scholar 

  26. Anbuchelian, S., Sowmya, C.M., Ramesh, C.: Efficient and secure auditing scheme for privacy preserving data storage in cloud. Clust. Comput. (2017). https://doi.org/10.1007/s10586-017-1486-z

    Article  Google Scholar 

  27. Zhang, Y., Yu, J., Hao, R., Wang, C., Ren, K.: Enabling efficient user revocation in identity-based cloud storage auditing for shared big data. IEEE Trans. Depend. Secure Comput. (2018). https://doi.org/10.1109/TDSC.2018.2829880

    Article  Google Scholar 

  28. Yu, J., Ren, K., Wang, C.: Enabling cloud storage auditing with verifiable outsourcing of key updates. IEEE Trans. Inf. Forensics Secur. 11(6), 1362–1375 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Subramanian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramanian, E.K., Tamilselvan, L. Elliptic curve Diffie–Hellman cryptosystem in big data cloud security. Cluster Comput 23, 3057–3067 (2020). https://doi.org/10.1007/s10586-020-03069-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-020-03069-3

Keywords

Navigation