Skip to main content
Log in

An intelligent approach for predicting resource usage by combining decomposition techniques with NFTS network

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Time sensitive virtual machines that run real-time control tasks are constrained by hard timing requirements. Optimal resource management and guarantee the hard timing requirements of virtual machines are critical goals. Basically, cloud resource usage predicting and resource reservation play a crucial role to achieve these two goals. So, we propose a predicting approach based on two-phase decomposition method and hybrid neural network to predict future resource usage. This paper uses a clustering method based on the AnYa algorithm in an on-line manner in order to obtain the number of fuzzy rules and the initial value of the premise and consequent parameters. Since cloud resource usage varies widely from time to time and server to server, extracting the best time series model for predicting cloud resource usage depend not only on time but on the cloud resource usage trend. For this, we present a recursive hybrid technique based on singular spectrum analysis and adaptively fast ensemble empirical mode decomposition to identify the hidden characteristics of the time series data. This method tries to extract seasonal and irregular components of the time series. According to the simulation results, it can be found that the proposed model can have significantly better performance than the three comparison models from one-step to six-step CPU usage predictions with the MAPE of 33.83% average performance promotion, MAE of 36.54% average performance promotion, RMSE of 36.70% average performance promotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen, J., Wang, Y.: A Resource demand prediction method based on EEMD in cloud computing. Int. Congress Inform. Commun. Technol. 131, 116–123 (2018)

    Google Scholar 

  2. Raagaard, M.L., Pop, P., Gutierrez, M., Steiner, W.: Runtime reconfiguration of time-sensitive networking schedules for fog computing. IEEE Fog World Congress (2017). https://doi.org/10.1109/FWC.2017.8368523

    Article  Google Scholar 

  3. Balaji, M., Kumar, C.A., Rao, G.S.V.R.K.: Predictive cloud resource management framework for enterprise workloads. J. King Saud Univ. Comput. Inform. Sci. 30, 404–415 (2018)

    Google Scholar 

  4. Nayak, S.C., Parida, S., Tripathy, C., Pattnaik, P.K.: An enhanced deadline constraint based task scheduling mechanism for cloud environment. J. King Saud Univ. Comput. Inform. (2018). https://doi.org/10.1016/j.jksuci.2018.10.009

    Article  Google Scholar 

  5. Nayak, S.C., Tripathy, C.: Deadline sensitive lease scheduling in cloud computing environment using AHP. J. King Saud Univ. Comput. Inform. 30, 152–163 (2018)

    Google Scholar 

  6. Khabbaz, M., Assi, C.: Modelling and analysis of a novel deadline-aware scheduling scheme for cloud computing data centers. IEEE Trans. Cloud Comput. 6, 141–155 (2015)

    Google Scholar 

  7. Chen, C.H., Lin, G.W., Kuo, S.Y.: MapReduce scheduling for deadline-constrained jobs in heterogeneous cloud computing systems. IEEE Trans. Cloud Comput. (2015). https://doi.org/10.1109/TCC.2015.2474403

    Article  Google Scholar 

  8. Li, Z., Ge, J., Hu, H., Song, W., Hu, H., Luo, B.: Cost and energy aware scheduling algorithm for scientific workflows with deadline constraint in clouds. IEEE Trans. Serv. Comput. (2015). https://doi.org/10.1109/TSC.2015.2466545

    Article  Google Scholar 

  9. Ji, S., Liu, S., Li, B.: Deadline-aware scheduling and routing for inter-datacenter multicast transfers. IEEE Int. Conf. Cloud Eng. (2018). https://doi.org/10.1109/IC2E.2018.00035

    Article  Google Scholar 

  10. Shishido, H.Y., Estrella, J.C., Toledo, C.F.M., Arantes, M.S.: Genetic-based algorithms applied to a workflow scheduling algorithm with security and deadline constraints in clouds. Comput. Electr. Eng. (2017). https://doi.org/10.1016/j.compeleceng.2017.12.004

    Article  Google Scholar 

  11. Garg, N., Goraya, M.S.: Task deadline-aware energy-efficient scheduling model for a virtualized cloud. Arab J. Sci. Eng. (2018). https://doi.org/10.1007/s13369-017-2779-5

    Article  Google Scholar 

  12. Rahmanian, A.A., Ghobaei-Arani, M., Tofighy, S.: A learning automata-based ensemble resource usage prediction algorithm for cloud computing environment. Future Gener. Comput. Syst. (2017). https://doi.org/10.1016/j.future.2017.09.049

    Article  Google Scholar 

  13. Rodrigues Junior, S.E., Serra, G.L.O.: A novel intelligent approach for state space evolving forecasting of seasonal time series. Eng. Appl. Artif. Intell. 64, 272–285 (2017)

    Google Scholar 

  14. Abdollahzade, M., Miranian, A., Hassani, H., Iranmanesh, H.: A new hybrid enhanced local linear neuro-fuzzy model based on the optimized singular spectrum analysis and its application for nonlinear and chaotic time series forecasting. Inform. Sci. (2014). https://doi.org/10.1016/j.ins.2014.09.002

    Article  Google Scholar 

  15. Mason, K., Duggan, M., Barrett, E., Duggan, J., Howley, E.: Predicting host CPU utilization in the cloud using evolutionary neural Networks. Future Gener. Comput. Syst. (2018). https://doi.org/10.1016/j.future.2018.03.040

    Article  Google Scholar 

  16. Kumar, J., Singh, A.K.: Workload prediction in cloud using artificial neural network and adaptive differential evolution. Future Gener. Comput. Syst. (2018). https://doi.org/10.1016/j.future.2017.10.047

    Article  Google Scholar 

  17. Gao, C., Sun, H., Wang, T., Tang, M., Bohnen, N.I., Müller, M.L., Herman, T., Giladi, N., Kalinin, A., Spino, C.: Model-based and model-free machine learning techniques for diagnostic prediction and classification of clinical outcomes in Parkinson’s disease. Sci. Rep 8(1), 1–21 (2018)

    Google Scholar 

  18. Zhou, F., Zhou, H.-M., Yang, Z., Yang, L.: EMD2FNN: A strategy combining empirical mode decomposition and factorization machine based neural network for stock market trend prediction. Exp. Syst. Appl. 115, 136–151 (2019)

    MathSciNet  Google Scholar 

  19. Amiri, M., Khanli, L.M., Mirandolab, R.: A sequential pattern mining model for application workload prediction in cloud environment. J. Netw. Comput. Appl. 105, 21–62 (2018)

    Google Scholar 

  20. Kim, K.-J.: Financial time series forecasting using support vector machines. Neurocomputing 55(1–2), 307–319 (2003)

    Google Scholar 

  21. Qian, X.-Y.: Financial series prediction: Comparison between precision of time series models and machine learning methods. arXiv preprint arXiv:1706.00948 (2017).

  22. Kim, K.-J., Han, I.: Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index. Exp. Syst. Appl. 19(2), 125–132 (2000)

    MathSciNet  Google Scholar 

  23. Trana, N., Nguyena, T., Nguyena, B.M., Nguyen, G.: A multivariate fuzzy time series resource forecast model for clouds using LSTM and data correlation analysis. Int. Conf. Knowl. Based Intell. Inform. Eng. Syst. 126, 636–645 (2018)

    Google Scholar 

  24. Kumara, J., Goomer, R., Singh, A.K.: Long short term memory recurrent neural network (LSTM-RNN) based workload forecasting model for cloud datacenters. Int. Confer. Smart Comput. Commun. 125, 676–682 (2018)

    Google Scholar 

  25. Ullrich, M., Lässig, J.: Current challenges and approaches for resource demand estimation in the cloud. Int. Confer. Cloud Comput. Big Dat. (2013). https://doi.org/10.1109/CLOUDCOM-ASIA.2013.52

    Article  Google Scholar 

  26. Lang, K., Zhang, M., Yuan, Y., Yue, X.: Short-term load forecasting based on multivariate time series prediction and weighted neural network with random weights and kernels. Clust. Comput. (2018). https://doi.org/10.1007/s10586-017-1685-7

    Article  Google Scholar 

  27. Rather, A.M., Agarwal, A., Sastry, V.: Recurrent neural network and a hybrid model for prediction of stock returns. Exp. Syst. Appl. 42(6), 3234–3241 (2015)

    Google Scholar 

  28. Mason, K., Duggan, J., Howley, E.: A multi-objective neural network trained with differential evolution for dynamic economic emission dispatch. Electr. Power Energy Syst. 100, 201–221 (2018)

    Google Scholar 

  29. Yu, L., Wang, S., Lai, K.K.: Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm. Energy Econ. 30, 2623–2635 (2008)

    MATH  Google Scholar 

  30. Ge, D., Zeng, X.J.: A self-evolving fuzzy system which learns dynamic threshold parameter by itself. IEEE Trans. Fuzzy Syst. (2018). https://doi.org/10.1109/TFUZZ.2018.2886154

    Article  Google Scholar 

  31. Angelov, P.: Evolving Takagi–Sugeno fuzzy systems from streaming data. In: Angelov, P., Filev, D., Kasabov, N. (eds.) Evolving Intelligent Systems: Methodology and Applications, pp. 21–50. IEEE Press Series on Computational Intelligence, Wiley, Hoboken (2010)

    Google Scholar 

  32. Halabi, L.M., Mekhilef, S., Hossain, M.: Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation. Appl. Energy 213, 247–261 (2018)

    Google Scholar 

  33. Zhao, K., Li, S., Kang, Z.: Takagi-Sugeno fuzzy modeling and control of nonlinear system with adaptive clustering algorithms. Int. Conf. Modell. Identif. Control (ICMIC) (2018). https://doi.org/10.1109/ICMIC.2018.8530000

    Article  Google Scholar 

  34. Rezaee, B., Fazel Zarandi, M.H.: Data-driven fuzzy modeling for Takagi–Sugeno–Kang fuzzy system. Inform. Sci. 180, 241–255 (2010)

    Google Scholar 

  35. Vieira, R., Gomide, F., Ballini, R.: Kernel evolving participatory fuzzy modeling for time series forecasting. IEEE Int. Conf. Fuzzy Syst. (2018). https://doi.org/10.1109/FUZZ-IEEE.2018.8491484

    Article  Google Scholar 

  36. Boroojenia, K.G., Hadi Amini, M., Bahramif, S., Iyengara, S.S., Sarwatg, A.I., Karabasoglu, O.: A novel multi-time-scale modeling for electric power demand forecasting: From short-term to medium-term horizon. Electric Power Syst. Res. 142, 58–73 (2017)

    Google Scholar 

  37. Sarıca, B., Egrioglu, E., Asıkgil, B.: A new hybrid method for time series forecasting: AR–ANFIS. Neural Comput Appl. (2016). https://doi.org/10.1007/s00521-016-2475-5

    Article  Google Scholar 

  38. Mi, X., Liu, H., Li, Y.: Wind speed prediction model using singular spectrum analysis, empirical mode decomposition and convolutional support vector machine. Energy Conv. Manag. 180, 196–205 (2019)

    Google Scholar 

  39. Patel, J., Shah, S., Thakkar, P., Kotecha, K.: Predicting stock market index using fusion of machine learning techniques. Expert Syst. Appl. 42, 2162–2172 (2015)

    Google Scholar 

  40. Wang, J.-Z., Wang, J.-J., Zhang, Z.-G., Guo, S.-P.: Forecasting stock indices with back propagation neural network. Expert Syst. Appl. 38(11), 14346–14355 (2011)

    Google Scholar 

  41. Er, M.J., Deng, C.: Obstacle avoidance of a mobile robot using hybrid learning approach. IEEE Trans. Indust. Electron. 52(3), 898–905 (2005)

    Google Scholar 

  42. Lin, F.-J., Huang, M.-S., Yeh, P.-Y., Tsai, H.-C., Kuan, C.-H.: DSP-based probabilistic fuzzy neural network control for Li-ion battery charger. IEEE Trans. Power Electron. 27(8), 3782–3794 (2012)

    Google Scholar 

  43. Lin, F.-J., Hung, Y.-C., Hwang, J.-C., Tsai, M.-T.: Fault-tolerant control of a six-phase motor drive system using a Takagi–Sugeno–Kang type fuzzy neural network with asymmetric membership function. IEEE Trans. Power Electron. 28(7), 3557–3572 (2012)

    Google Scholar 

  44. Wang, Z., Zhang, Y., Fu, H.: Autoregressive prediction with rolling mechanism for time series forecasting with small sample size. Math. Probl. Eng. (2014). https://doi.org/10.1155/2014/572173

    Article  MATH  Google Scholar 

  45. Duggan, M., Duggan, J., Howley, E., Barrett, E.: A reinforcement learning approach for the scheduling of live migration from under utilised hosts. Memetic Comput. (2016). https://doi.org/10.1007/s12293-016-0218-x

    Article  Google Scholar 

  46. Lin, F.-J., Lu, K.-C., Ke, T.-H., Yang, B.-H., Chang, Y.-R.: Reactive power control of three-phase grid-connected PV system during grid faults using Takagi–Sugeno–Kang probabilistic fuzzy neural network control. IEEE Trans. Ind. Electron. 62(9), 5516–5528 (2015)

    Google Scholar 

  47. Lin, C.J., Chin, C.C.: Prediction and identification using wavelet-based recurrent fuzzy neural networks. IEEE Trans. Syst. Man Cybernet. 34, 2144–2154 (2004)

    Google Scholar 

  48. Bi, J., Yuan, H., Zhang, L., Zhang, J.: SGW-SCN: An integrated machine learning approach for workload forecasting in geo-distributed cloud data centers. Inform. Sci. 481, 57–68 (2019)

    MathSciNet  Google Scholar 

  49. Nguyen, T.H., Di Francesco, M., Yla-Jaaski, M.: Virtual machine consolidation with multiple usage prediction for energy-efficient cloud data centers. IEEE Trans. Serv. Comput. (2016). https://doi.org/10.1109/TSC.2017.2648791

    Article  Google Scholar 

  50. Tang, X., Liao, X., Zheng, J., Yang, X.: Energy efficient job scheduling with workload prediction on cloud data center. Clust. Comput. (2018). https://doi.org/10.1007/s10586-018-2154-7

    Article  Google Scholar 

  51. Gupta, R.K., Pateriya, R.K.: Balance Resource Utilization (BRU) Approach for the Dynamic Load Balancing in Cloud Environment by Using AR Prediction Model. Journal of Organizational and End User Computing (2017). https://doi.org/10.4018/JOEUC.2017100102

    Article  Google Scholar 

  52. Tao, M., Dong, S., Zhang, L.: A multi-strategy collaborative prediction model for the runtime of online tasks in computing cluster/grid. Clust. Comput. (2011). https://doi.org/10.1007/s10586-010-0145-4

    Article  Google Scholar 

  53. Kecskemeti, G., Nemeth, Z., Kertesz, A., Ranjan, R.: Cloud workload prediction based on workflow execution time discrepancies. Clust. Comput. (2018). https://doi.org/10.1007/s10586-018-2849-9

    Article  Google Scholar 

  54. Xu, C.Z., Rao, J., Bu, X.: URL: A unified reinforcement learning approach for autonomic cloud management. J. Parallel Distrib. Comput. 72(2), 95–105 (2012)

    Google Scholar 

  55. Amiri, M., Mohammad-Khanli, L.: Survey on prediction models of applications for resources provisioning in Cloud. J. Netw. Comput. Appl. 82, 93–113 (2017)

    Google Scholar 

  56. Thein, T., Myo, M.M., Parvin, S., Gawanmeh, A.: Reinforcement learning based methodology for energy-efficient resource allocation in cloud data centers. J. King Saud Univ. Comput. Inform. Sci. (2018). https://doi.org/10.1016/j.jksuci.2018.11.005

    Article  Google Scholar 

  57. Zheng, S., Zhu, G., Zhang, J., Feng, W.: Towards an adaptive human-centric computing resource management framework based on resource prediction and multi-objective genetic algorithm. Multimed Tools Appl. (2015). https://doi.org/10.1007/s11042-015-3096-1

    Article  Google Scholar 

  58. Cioara, T., Anghel, I., Salomie, I.: Methodology for energy aware adaptive management of virtualized data centers. Energy Effic. (2016). https://doi.org/10.1007/s12053-016-9467-2

    Article  Google Scholar 

  59. Ranjbari, M., Akbari Torkestani, J.: A learning automata-based algorithm for energy and SLA efficient consolidation of virtual machines in cloud data centers. J. Parallel Distrib. Comput. (2017). https://doi.org/10.1016/j.jpdc.2017.10.009

    Article  Google Scholar 

  60. Alireza Souri, A., Rahmani, A.M., Jafari Navimipour, N.: Formal verification approaches in the web service composition: a comprehensive analysis of the current challenges for future research. Int. J. Commun. Syst. (2018). https://doi.org/10.1002/dac.3808

    Article  Google Scholar 

  61. Narendra, K.S., Thathachar, M.A.: Learning automata-a survey. IEEE Trans. Syst. Man Cybernet. 4, 323–334 (1974)

    MathSciNet  MATH  Google Scholar 

  62. Thathachar, M.A., Sastry, P.S.: Varieties of learning automata: an overview. IEEE Trans. Syst. Man Cybernet. Part B 32(6), 711–722 (2002)

    Google Scholar 

  63. Figueiredo, M.B., de Almeida, A., Ribeiro, B.: Wavelet decomposition and singular spectrum analysis for electrical signal denoising. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics 2011, pp. 3329–3334. IEEE

  64. Jiang, H., Haihong, E., Song, M.: Multi-prediction based scheduling for hybrid workloads in the cloud data center. Clust. Comput. (2018). https://doi.org/10.1007/s10586-018-2265-1

    Article  Google Scholar 

  65. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Google Scholar 

  66. Song, B., Yu, Y., Zhou, Y., Wang, Z., Du, S.: Host load prediction with long short-term memory in cloud computing. J. Supercomput. (2018). https://doi.org/10.1007/s11227-017-2044-4

    Article  Google Scholar 

  67. Babu, K.R.R., Samuel, P.: Interference aware prediction mechanism for auto scaling in cloud. Comput. Electr. Eng. (2017). https://doi.org/10.1016/j.compeleceng.2017.12.021

    Article  Google Scholar 

  68. Kumar, N., Patel, P.: Resource management using feed forward ANN-PSO. Cloud Comput. Environ. (2016). https://doi.org/10.1145/2905055.2905115

    Article  Google Scholar 

  69. Witanto, J.N., Lim, H., Atiquzzaman, M.: Adaptive selection of dynamic VM consolidation algorithm using neural network for cloud resource management. Future Gener. Comput. Syst. (2018). https://doi.org/10.1016/j.future.2018.04.075

    Article  Google Scholar 

  70. Kaur, G., Bala, A., Chana, I.: An intelligent regressive ensemble approach for predicting resource usage in cloud computing. J. Parallel. Distrib. Comput. 123, 1–12 (2019)

    Google Scholar 

  71. Gill, S.S., Chana, I., Singh, M., Buyya, R.: CHOPPER: an intelligent QoS-aware autonomic resource management approach for cloud computing. Clust. Comput. (2018). https://doi.org/10.1007/s10586-017-1040-z

    Article  Google Scholar 

  72. Tofighy, S., Rahmanian, A.A., Ghobaei-Arani, M.: An ensemble CPU load prediction algorithm using a Bayesian information criterion and smooth filters in a cloud computing environment. Softw. Pract. Exp. (2018). https://doi.org/10.1002/spe.2641

    Article  Google Scholar 

  73. Manjula, C., Florence, L.: Deep neural network based hybrid approach for software defect prediction using software metrics. Clust. Comput. (2018). https://doi.org/10.1007/s10586-018-1696-z

    Article  Google Scholar 

  74. Chen, Y., Yang, T.-J., Emer, J., Sze, V.: Understanding the limitations of existing energy-efficient design approaches for deep neural networks. Energy 2, 1–3 (2018)

    Google Scholar 

  75. Fei, X., Youfu, S., Xuejun, R.: A rough set data prediction method based on neural network evaluation and least squares fusion. Clust. Comput. (2018). https://doi.org/10.1007/s10586-018-2641-x

    Article  Google Scholar 

  76. Zhang, W., Duan, P., Yang, L.T., Xia, F., Li, Z., Lu, Q., Gong, W., Yang, S.: Resource requests prediction in the cloud computing environment with a deep belief network. Softw. Pract. Exp. (2016). https://doi.org/10.1002/spe.2426

    Article  Google Scholar 

  77. Vohra, R., Goel, K., Sahoo, J.: Modeling temporal dependencies in data using a DBN-LSTM. In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA) 2015, pp. 1–4. IEEE

  78. Agarwalla, N., Panda, D., Modi, M.K.: Deep learning using restricted boltzmann machines. Int. J. Comput. Sci. Inform. Secur. 7(3), 1552–1556 (2016)

    Google Scholar 

  79. Muralitharan, K., Sakthivel, R., Vishnuvarthan, R.: Neural network based optimization approach for energy demand prediction in smart grid. Neurocomputing (2017). https://doi.org/10.1016/j.neucom.2017.08.017

    Article  Google Scholar 

  80. Wang, G., Jia, Q.-S., Qiao, J., Bi, J., Liu, C.: A sparse deep belief network with efficient fuzzy learning framework. Neural Netw. 121, 430–440 (2020)

    Google Scholar 

  81. Wang, G., Qiao, J., Bi, J., Li, W., Zhou, M.: Tl-gdbn: Growing deep belief network with transfer learning. IEEE Trans. Automat. Sci. Eng. 16(2), 874–885 (2018)

    Google Scholar 

  82. Wang, L., Kunze, M., Tao, J.: Performance evaluation of virtual machine-based Grid workflow system. Concurr. Comput. Pract. Exp. 20, 1759–1771 (2008)

    Google Scholar 

  83. Zubaidi, S.L., Dooley, J., Alkhaddar, R.M., Abdellatif, M., Al-Bugharbee, H., Ortega-Martorell, S.: A novel approach for predicting monthly water demand by combining singular spectrum analysis with neural networks. J. Hydrol. (2018). https://doi.org/10.1016/j.jhydrol.2018.03.047

    Article  Google Scholar 

  84. Nguyen, L., Novák, V.: Forecasting seasonal time series based on fuzzy techniques. Fuzzy Sets Syst. (2018). https://doi.org/10.1016/j.fss.2018.09.010

    Article  MATH  Google Scholar 

  85. Zhang, X., Wang, J.: A novel decomposition-ensemble model for forecasting short-term load-time series with multiple seasonal patterns. Appl. Soft Comput. 65, 478–494 (2018)

    Google Scholar 

  86. Xiao, L., Qian, F., Shao, W.: Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm. Energy Conv. Manag. 143, 410–430 (2017)

    Google Scholar 

  87. de Oliveira, J.F.L., Ludermir, T.B.: A hybrid evolutionary decomposition system for time series forecasting. Neurocomputing (2015). https://doi.org/10.1016/j.neucom.2015.07.113

    Article  Google Scholar 

  88. Xue, X., Zhou, J.Z., Xu, Y., Zhu, W., Li, C.: An adaptively fast ensemble empirical mode decomposition method and its applications to rolling element bearing fault diagnosis. Mech. Syst. Signal Process. (2015). https://doi.org/10.1016/j.ymssp.2015.03.002

    Article  Google Scholar 

  89. Sahni, J., Vidyarthi, D.P.: A Cost-effective deadline-constrained dynamic scheduling algorithm for scientific workflows in a cloud environment. IEEE Trans. Cloud Comput. (2015). https://doi.org/10.1109/TCC.2015.2451649

    Article  Google Scholar 

  90. Xue, X.M., Zhou, J.Z.: A hybrid fault diagnosis approach based on mixed-domain state features for rotating machinery. ISA Trans. 66, 284–295 (2017)

    Google Scholar 

  91. Sasmita, Y., Darmawan, G.: Accuracy evaluation of Fourier series analysis and singular spectrum analysis for predicting the volume of motorcycle sales in Indonesia. AIP Conf. Proc. (2017). https://doi.org/10.1063/1.4995125

    Article  Google Scholar 

  92. Golyandina, N., Korobeynikov, A.: Basic singular spectrum analysis and forecasting with R. Comput. Stat. Data Anal. (2014). https://doi.org/10.1016/j.csda.2013.04.009

    Article  MathSciNet  MATH  Google Scholar 

  93. Andonovski, G., Mušič, G., Blažič, S., Škrjanc, I.: Evolving model identification for process monitoring and prediction of non-linear systems. Eng. Appl. Artif. Intell. 68, 214–221 (2018)

    Google Scholar 

  94. Angelov, P., Yager, R.: A new type of simplified fuzzy rule-based system. Int. J. General Syst. (2012). https://doi.org/10.1080/03081079.2011.634807

    Article  MathSciNet  MATH  Google Scholar 

  95. Banihabib, M.E., Bandari, R., Peralta, R.C.: Auto-regressive neural-network models for long lead-time forecasting of daily flow. Water Resour. Manag. 33, 159–172 (2019)

    Google Scholar 

  96. Beloglazov, A., Buyya, R.: Managing overloaded hosts for dynamic consolidation of virtual machines in cloud data centers under quality of service constraints. IEEE Trans. Parallel Distrib. Syst. 24(7), 1366–1379 (2012)

    Google Scholar 

  97. Casolari, S., Colajanni, M., Presti, F.L.: Runtime state change detector of computer system resources under non stationary conditions. In: 2009 IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems 2009, pp. 1–10. IEEE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Sabaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashida, S.Y., Sabaei, M., Ebadzadeh, M.M. et al. An intelligent approach for predicting resource usage by combining decomposition techniques with NFTS network. Cluster Comput 23, 3435–3460 (2020). https://doi.org/10.1007/s10586-020-03099-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-020-03099-x

Keywords

Navigation