Skip to main content

Advertisement

Log in

Data mining techniques for analyzing healthcare conditions of urban space-person lung using meta-heuristic optimized neural networks

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Urban computing is one of the effective fields that have ability to collect the large volume of data, integrate and analyze the data in urban space. The urban space faces several issues such as traffic congestion, more energy consumption, air pollution and so on. Among the several problems, air pollution is one of the major issues because it creates several health issues. So, this paper introduces the meta-heuristic optimized neural network to analyze patient health to predict different diseases. Initially, patient data are collected, normalized by applying a min–max normalization process. Then different features are extracted and Hilbert–Schmidt Independence Criterion based features are selected. Further patient's health condition is analyzed and classified into a normal and abnormal person. The classification process is done by applying the harmony optimized modular neural network. Here the system efficiency is evaluated using simulation results, which ensures maximum accuracy of 98.9% -ELT-COPD and 98% -NIH clinical dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. von Schneidemesser, E., Monks, P.S., Plass-Duelmer, C.: Global comparison of VOC and CO observations in urban areas. Atmos. Environ. 44(39), 5053–5064 (2010)

    Article  Google Scholar 

  2. Fouad, H., Hassanein, A.S., Soliman, A.M., Al-Feel, H.: Analyzing patient health information based on IoT sensor with AI for improving patient assistance in the future direction. Measurement 159, 107757 (2020)

    Article  Google Scholar 

  3. Weber, N., Haase, D., Franck, U.: Assessing modelled outdoor traffic-induced noise and air pollution around urban structures using the concept of landscape metrics. Landsc. Urban Plan. 125, 105–116 (2014). https://doi.org/10.1016/j.landurbplan.2014.02.018

    Article  Google Scholar 

  4. Hoek, G., Beelen, R., de Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., et al.: A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 42(33), 7561–7578 (2008). https://doi.org/10.1016/j.atmosenv.2008.05.057

    Article  Google Scholar 

  5. Shakeel, P.M., Baskar, S., Dhulipala, V.S., Mishra, S., Jaber, M.M.: Maintaining security and privacy in health care system using learning based Deep-Q-Networks. J. Med. Syst. 42(10), 186 (2018). https://doi.org/10.1007/s10916-018-1045-z

    Article  Google Scholar 

  6. Lim, S.S., Vos, T., Flaxman, A.D., Danaei, G., Shibuya, K., Adair-Rohani, H., et al.: A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859), 2224–2260 (2012). https://doi.org/10.1016/S0140-6736(12)61766-8

    Article  Google Scholar 

  7. Schindler, M., Caruso, G.: Urban compactness and the trade-off between air pollution emission and exposure: lessons from a spatially explicit theoretical model. Comput. Environ. Urban. 45, 13–23 (2014). https://doi.org/10.1016/j.compenvurbsys.2014.01.004

    Article  Google Scholar 

  8. Jarjour, S., Jerrett, M., Westerdahl, D., de Nazelle, A., Hanning, C., Daly, L., et al.: Cyclist route choice, traffic-related air pollution, and lung function: a scripted exposure study. Environ. Health. 12(1), 1–12 (2013). https://doi.org/10.1186/1476-069X-12-14

    Article  Google Scholar 

  9. Shakeel, P.M., Burhanuddin, M.A., Desa, M.I.: Lung cancer detection from CT image using improved profuse clustering and deep learning instantaneously trained neural networks. Measurement (2019). https://doi.org/10.1016/j.measurement.2019.05.027

    Article  Google Scholar 

  10. Al Kheraif, A., Wahba, A., Fouad, H.: Detection of dental diseases from radiographic 2d dental image using hybrid graph-cut technique and convolutional neural network. Measurement 146, 333–342 (2019)

    Article  Google Scholar 

  11. Alsiddiky, A., Awwad, W., Bakarman, K., Fouad, H., Mahmoud, N.: Magnetic resonance imaging evaluation of vertebral tumor prediction using hierarchical hidden Markov random field model on Internet of Medical Things (IOMT) platform. Measurement 159, 107772 (2020)

    Article  Google Scholar 

  12. Suzuki, A., Sakanashi, H., Kido, S., Shouno, H.: Feature representation analysis of deep convolutional neural network using two-stage feature transfer-an application for diffuse lung disease classification. arXiv:1810.06282 (2018).

  13. Manogaran, G., Shakeel, P.M., Fouad, H., Nam, Y., Baskar, S., Chilamkurti, N., Sundarasekar, R.: Wearable IoT smart-log patch: An edge computing-based Bayesian deep learning network system for multi access physical monitoring system. Sensors 19(13), 3030 (2019)

    Article  Google Scholar 

  14. Mahmoud, N.M., Fouad, H., Alsadon, O., Soliman, A.M.: Detecting dental problem related brain disease using intelligent bacterial optimized associative deep neural network. Cluster Comput. (2020). https://doi.org/10.1007/s10586-020-03104-3

    Article  Google Scholar 

  15. Fouad, H., Hassanein, A., Soliman, A., Al-Feel, H.: Internet of medical things (IoMT) assisted vertebral tumor prediction using heuristic hock transformation based gautschi model–a numerical approach. IEEE Access 8, 17299–17309 (2020)

    Article  Google Scholar 

  16. Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B., Liang, J.: Convolutional neural networks for medical image analysis: full training or fine tuning. IEEE Trans Med Imag 35(5), 1299–1312 (2016)

    Article  Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014).

  18. Krizhevsky, A., Sutskever, I., Hinton, GE.: Imagenet classification with deep convolutional neural networks. Proc. Adv. Neural Inf. Process Syst. 1097–1105 (2012).

  19. . Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 1–9 (2015).

  20. Al Kheraif, A.A., Alshahrani, O.A., Al Esawy, M.S.S., Fouad, H.: Evolutionary and Ruzzo-Tompa optimized regulatory feedback neural network based evaluating tooth decay and acid erosion from 5 years old children. Measurement 141, 345–355 (2019)

    Article  Google Scholar 

  21. Liaghat, S., Mansoori, E.G.: Filter-based unsupervised feature selection using Hilbert-Schmidt independence criterion. Int. J. Mach. Learn. Cyber. 10, 2313–2328 (2019). https://doi.org/10.1007/s13042-018-0869-7

    Article  Google Scholar 

  22. https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-37768/

  23. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R. M.:Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)

  24. Huang, S., Lee, F., Miao, R., et al.: A deep convolutional neural network architecture for interstitial lung disease pattern classification. Med. Biol. Eng. Comput. (2020). https://doi.org/10.1007/s11517-019-02111-w

    Article  Google Scholar 

  25. Selvanambi, R., Natarajan, J., Karuppiah, M., et al.: Lung cancer prediction using higher-order recurrent neural network based on glowworm swarm optimization. Neural Comput. Appl. (2018). https://doi.org/10.1007/s00521-018-3824-3

    Article  Google Scholar 

  26. ALzubi, J.A., Bharathikannan, B., Tanwar, S., Manikandan, R., Khanna, A., Thaventhiran, C.: Boosted neural network ensemble classification for lung cancer disease diagnosis. Appl. Soft Comput. 80, 579–591 (2019)

    Article  Google Scholar 

  27. Hankey, S., Marshall, J.D.: Urban form, air pollution, and health. Curr. Environ. Health Rep 4, 491–503 (2017). https://doi.org/10.1007/s40572-017-0167-7

    Article  Google Scholar 

  28. Zhang, J., Day, D.: Urban air pollution and health in developing countries. In: Nadadur, S., Hollingsworth, J. (eds.) Air Pollution and Health Effects Molecular and Integrative Toxicology. Springer, London (2015)

    Google Scholar 

  29. Jiao, K., Xu, M., Liu, M.: Health status and air pollution related socioeconomic concerns in urban China. Int. J. Equity Health 17, 18 (2018). https://doi.org/10.1186/s12939-018-0719-y

    Article  Google Scholar 

  30. Mohamad Mohsin, M.F., Hamdan, A.R., Abu, B.A.: The effect of normalization for real value negative selection algorithm. In: Noah, S.A., et al. (eds.) Soft Computing Applications and Intelligent Systems. M-CAIT 2013. Communications in Computer and Information Science. vol. 378, Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  31. Liu, C., Ma, Q., Xu, J.: Multi-label feature selection method combining unbiased Hilbert-Schmidt independence criterion with controlled genetic algorithm. In: Cheng, L., Leung, A., Ozawa, S. (eds.) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science. vol. 11304, Springer, Cham (2018)

    Google Scholar 

  32. Xu, J.: Effective and efficient multi-label feature selection approaches via modifying Hilbert-Schmidt independence criterion. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science. vol. 9949, Springer, Cham (2016)

    Google Scholar 

  33. Savić, M., Kurbalija, V., Ivanović, M., Bosnić, Z.: A feature selection method based on feature correlation networks. In: Ouhammou, Y., Ivanovic, M., Abelló, A., Bellatreche, L. (eds.) Model and Data Engineering. MEDI 2017. Lecture Notes in Computer Science. vol. 10563, Springer, Cham (2017)

    Google Scholar 

  34. Chen, S., Ding, C.H.Q., Zhou, Z., et al.: Feature selection based on correlation deflation. Neural Comput. Appl. 31, 6383–6392 (2019). https://doi.org/10.1007/s00521-018-3467-4

    Article  Google Scholar 

  35. Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imag. 35(5), 1285–1298 (2016)

    Article  Google Scholar 

  36. Agnes, S.A., Anitha, J., Pandian, S.I.A., et al.: Classification of mammogram images using multiscale all convolutional neural network (MA-CNN). J. Med. Syst. 44, 30 (2020). https://doi.org/10.1007/s10916-019-1494-z

    Article  Google Scholar 

  37. Shukla, A., Tiwari, R., Kala, R.: Modular neural networks. In: Towards Hybrid and Adaptive Computing. Studies in Computational Intelligence, vol 307. Springer, Berlin, Heidelberg, pp. 307–335 (2010). https://doi.org/10.1007/978-3-642-14344-1_14

    Chapter  Google Scholar 

  38. Du, K. L., Swamy, M. N. S.: Harmony search. In: Search and Optimization by Metaheuristics, pp. 227–235. Birkhäuser, Cham (2016). https://doi.org/10.1007/978-3-319-41192-7_14

    Chapter  Google Scholar 

  39. Lipton, Z.C., Elkan, C., Naryanaswamy, B.: Optimal thresholding of classifiers to maximize F1 measure. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2014. Lecture Notes in Computer Science. vol. 8725, Springer, Berlin, Heidelberg (2014)

    Google Scholar 

  40. Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, DD., Chen, M.: Medical image classification with convolutional neural network. Proc. 13th Int. Conf. Control Automat. Robot Vis. IEEE, 844–848 (2014)

  41. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradientbased learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  42. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, KQ.: Densely connected convolutional networks. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 4700–4708 (2017)

  43. Baskar, S., Shakeel, P.M., Kumar, R., Burhanuddin, M.A., Sampath, R.: A dynamic and interoperable communication framework for controlling the operations of wearable sensors in smart healthcare applications. Comput. Commun. 149, 17–26 (2020)

    Article  Google Scholar 

  44. Prasad, A., Gray, C.B., Ross, A., Kano, M.: Metrics in urban health: current developments and future prospects. Annu. Rev. Public Health. 37, 113–133 (2016). https://doi.org/10.1146/annurev-publhealth-032315-021749

    Article  Google Scholar 

  45. Tarando, S.R., Fetita, C., Faccinetto, A., Brillet, P.Y.: Increasing cad system efficacy for lung texture analysis using a convolutional network. In: Medical imaging 2016: Computer-aided diagnosis, 9785, 97850Q (2016)

  46. Rey Gozalo, G., BarrigónMorillas, J.M., Trujillo Carmona, J., Montes González, D., Atanasio Moraga, P., Gómez Escobar, V., et al.: Study on the relation between urban planning and noise level. Appl. Acoust. 111, 143–147 (2016). https://doi.org/10.1016/j.apacoust.2016.04.018

    Article  Google Scholar 

  47. Zhuang, F., Cheng, X., Luo, P., Pan, S.J., He, Q.: Supervised representation learning: transfer learning with deep autoencoders. Proc. 24th Int. Conf. Artif. Intell. (2015)

Download references

Acknowledgements

This work was supported in part the Deanship of Scientific Research at King Saud University for funding this work through research group No. (RG-1439-53). This work was supported in part by Zayed University, office of research under Grant No. R17089.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahed Abugabah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abugabah, A., AlZubi, A.A., Al-Obeidat, F. et al. Data mining techniques for analyzing healthcare conditions of urban space-person lung using meta-heuristic optimized neural networks. Cluster Comput 23, 1781–1794 (2020). https://doi.org/10.1007/s10586-020-03127-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-020-03127-w

Keywords

Navigation