Skip to main content
Log in

A regression tree predictive model for virtual machine startup time in IaaS clouds

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Cloud computing provides effective ways to rapidly provision computing resources over the Internet. For a better management of resource provisioning, the system requires to predict service-level agreements (SLAs) such as virtual machine (VM) startup times under various conditions of computing resources. The VM startup time is an important SLA parameter, which can impact other SLA parameters such as service initiation time and VM scale out times. By predicting VM startup times, Cloud providers can improve Cloud users’ expectations. Various quality of service (QoS) parameters have been considered in different resource allocation frameworks. Also, there are several efforts addressing QoS prediction in cloud environments. However, little research has considered VM startup time as a QoS parameter. In this paper, we propose a regression tree model for predicting average, minimum, and maximum VM startup times. To test the efficiency of our model, we implemented the model in an OpenStack test environment. The test results show that our model predicts VM startup times with an average accuracy of 91.81%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Scale_up time is the time taken to increase a specific number of VMs.

  2. Scale_down time is the time taken to decrease a specific number of VMs.

  3. Overfitting leads to high noise interference. i.e. the model tries to incorporate noise in the training data to the learning phase and, as a consequence, reduces the prediction accuracy.

References

  1. Buyya, R., Broberg, J., Goscinski, A.: Cloud Computing: Principles and Paradigms, p. 585. Wiley, London (2011)

    Book  Google Scholar 

  2. Amazon compute service sla (2018). https://aws.amazon.com/compute/sla

  3. Rackspace cloud sla (2018). https://www.rackspace.com/information/legal/cloud/sla

  4. Microsoft azure sla (2018). https://azure.microsoft.com/en-us/support/legal/sla/?v=17.23h610

  5. Google cloud sla (2018). https://cloud.google.com/compute/sla

  6. Geebelen, D., Geebelen, K., Truyen, E., Michiels, S., Suykens, J.A.K., Vandewalle, J., Joosen, W.: QoS prediction for web service compositions using kernel-based quantile estimation with online adaptation of the constant offset. Inf. Sci. 268, 397–424 (2014). https://doi.org/10.1016/j.ins.2013.12.063

    Article  Google Scholar 

  7. Xu, Y., Yin, J., Deng, S., Xiong, N.N., Huang, J.: Context-aware QoS prediction for web service recommendation and selection. Expert Syst. Appl. 53, 75–86 (2016). https://doi.org/10.1016/j.eswa.2016.01.010.620

    Article  Google Scholar 

  8. Mao, M., Humphrey, M.: A performance study on the vm startup time in the cloud. In: Proceedings of the 2012 IEEE 5th International Conference on Cloud Computing, CLOUD 2012, IEEE, 2012, pp. 423–430 (2012).https://doi.org/10.1109/CLOUD.2012.103

  9. Razavi, K., Razorea, L. M., Kielmann, T.: Reducing VM startup time and storage costs by VM image content consolidation, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 8374 LNCS, Springer, Berlin, Heidelberg, pp. 75–84 (2014). https://doi.org/10.1007/978-3-642-54420-08

  10. Wu, H., Ren, S., Garzoglio, G., Timm, S., Altayo, G.B., Chadwick, K., Noh, S.Y.: A reference model for virtual machine launching overhead. IEEE Trans. Cloud Comput. 250–264 (2016)

  11. Van, H. N., Tran, F. D., Menaud, J. M.: SLA-aware virtual resource management for cloud infrastructures. In: Proceedings of the IEEE 9th International Conference on Computer and Information Technology, CIT 2009, pp. 357–362 (2009). https://doi.org/10.1109/CIT.2009.109

  12. Wu, L., Garg, S.K., Buyya, R.: SLA-based admission control for a Software-as-a-Service provider in Cloud computing environments. J. Comput. Syst. Sci. 78, 1280–1299 (2012). https://doi.org/10.1016/j.jcss.2011.12.014.645

    Article  Google Scholar 

  13. Li, H., Zhu, G., Zhao, Y., Dai, Y., Tian, W.: Energy-efficient and QoS-aware model based resource consolidation in cloud data centers. Clust. Comput. (2017). https://doi.org/10.1007/s10586-017-0893-5

    Article  Google Scholar 

  14. Wang, S., Zhou, A., Hsu, C.H., Xiao, X., Yang, F.: Provision of data-intensive services through energy-and QoS-aware virtual machine placement in national cloud data centers. IEEE Trans. Emerg. Topics Comput. (2016). https://doi.org/10.1109/TETC.2015.2508383

    Article  Google Scholar 

  15. Singh, S., Chana, I.: QRSF: QoS-aware resource scheduling framework in cloud computing. J. Supercomput. (2014). https://doi.org/10.1007/s11227-014-1295-6

    Article  Google Scholar 

  16. Samreen, F., Elkhatib, Y., Rowe, M., Blair, G. S.: Daleel: Simplifying cloud instance selection using machine learning. In: Proceedings of the NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium, pp. 557–563 (2016) arXiv:1602.02159. https://doi.org/10.1109/NOMS.2016.7502858

  17. Ibrahim, A. A. Z. A., Kliazovich, D., Bouvry, P.: Service level agreement assurance between cloud services providers and cloud customers.v Proceedings of the 2016 16th IEEE/ACM International Symposium on Cluster,Cloud, and Grid Computing, CCGrid 2016 (2016). https://doi.org/10.1109/CCGrid.2016.56

  18. Stantchev, V., Schrpfer, C.: Negotiating and enforcing QoS and SLAs in grid and cloud computing. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 5529, Springer, Berlin, Heidelberg, pp. 25–35 (2009). https://doi.org/10.1007/978-3-642-01671-4

  19. Yadav, R., Zhang, W., Chen, H., Guo, T.: MuMs: Energy-aware VM selection scheme for cloud data center. In: Proceedings of the International Workshop on Database and Expert Systems Applications, DEXA, 2017-August, 132–136 (2017). https://doi.org/10.1109/DEXA.2017.43

  20. Yadav, R., Zhang, W., Li, K., Liu, C., Shafiq, M., Karn, N.K.: An adaptive heuristic for managing energy consumption and overloaded hosts in a cloud data center. Wireless Netw. 26(3), 1905–1919 (2020). https://doi.org/10.1007/s11276-018-1874-1

    Article  Google Scholar 

  21. Yadav, R., Zhang, W.: MeReg: mmanaging energy-SLA tradeoff for green mobile cloud computing. Wireless Commun. Mobile Comput. (2017). https://doi.org/10.1155/2017/6741972

    Article  Google Scholar 

  22. Yadav, R., Zhang, W., Kaiwartya, O., Singh, P.R., Elgendy, I.A., Tian, Y.C.: Adaptive energy-aware algorithms for minimizing energy consumption and SLA violation in cloud computing. IEEE Access 6, 55923–55936 (2018). https://doi.org/10.1109/ACCESS.2018.2872750

    Article  Google Scholar 

  23. Fu, X., Zhou, C.: Virtual machine selection and placement for dynamic consolidation in Cloud computing environment. Front. Comput. Sci. 9(2), 322–330 (2015). https://doi.org/10.1007/s11704-015-4286-8

    Article  MathSciNet  Google Scholar 

  24. Ma, H., Zhu, H., Hu, Z., Tang, W., Dong, P.: Multi-valued collaborative QoS prediction for cloud service via time series analysis. Future Gen. Comput. Syst. (2017). https://doi.org/10.1016/j.future.2016.10.012

    Article  Google Scholar 

  25. Su, K., Xiao, B., Liu, B., Zhang, H., Zhang, Z.: TAP: A personalized trust-aware QoS prediction approach for web service recommendation. Knowl. Based Syst. (2017). https://doi.org/10.1016/j.knosys.2016.09.033

    Article  Google Scholar 

  26. Chen, Z., Shen, L., Li, F.: Exploiting Web service geographical neighborhood for collaborative QoS prediction. Future Gen. Comput. Syst. (2017). https://doi.org/10.1016/j.future.2016.09.022

    Article  Google Scholar 

  27. Zhang, W., Hu, Y., Zhang, Y., Raychaudhuri, D.: SEGUE: quality of service aware edge cloud service migration. In: Proceedings of the International Conference on Cloud Computing Technology and Science, CloudCom 2017, pp. 344–351 (2017). https://doi.org/10.1109/CloudCom.2016.0061.685

  28. Tang, B., Tang, M.: Bayesian model-based prediction of service level agreement violations for cloud services. In: Proceedings of the 2014 International Symposium on Theoretical Aspects of Software Engineering, TASE 2014, pp. 170–176 (2014) https://doi.org/10.1109/TASE.2014.34.31

  29. Ye, Z., Mistry, S.K., Bouguettaya, A., Dong, H.: Long-term QoS-aware cloud service composition using multivariate time series analysis. IEEE Trans. Serv. Comput. (2014). https://doi.org/10.1109/TSC.2014.2373366

    Article  Google Scholar 

  30. Loh, W.Y.: Classification and regression trees. WIREs Data Mining Knowl. Discov. (2011). https://doi.org/10.1016/0169-7439(91)80113-5

    Article  Google Scholar 

  31. Guerout, T., Medjiah, S., Da Costa, G., Monteil, T.: Quality of service modeling for green scheduling in Clouds. Sustain. Comput. Inf. Syst. (2014). https://doi.org/10.1016/j.suscom.2014.08.06

    Article  Google Scholar 

  32. Alhamad, M., Dillon, T., Chang, E.: Conceptual SLA framework for cloud computing. In: 4th IEEE International Conference on Digital Ecosystems and Technologies—Conference Proceedings of IEEE-DEST 2010, DEST 2010, IEEE, pp. 606–610. (2010). https://doi.org/10.1109/DEST.2010.5610586.635

  33. Baset, S.A.: Cloud SLAs. ACM SIGOPS Operating Systems Review (2012). https://doi.org/10.1145/2331576.2331586

  34. Wu, L., Garg, S. K., Buyya, R.: SLA-based resource allocation for software as a service provider (SaaS) in cloud computing environments. In: Proceedings of the 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 195–204. (2011). https://doi.org/10.1109/CCGrid.2011.51.600

  35. Shahidinejad, A., Ghobaei-Arani, M., Masdari, M.: Resource provisioning using workload clustering in cloud computing environment: a hybrid approach. Cluster Comput. (2020). https://doi.org/10.1007/s10586-020-03107-0

    Article  Google Scholar 

  36. Chen, X., Wang, H., Ma, Y., Zheng, X., Guo, L.: Self-adaptive resource allocation for cloud-based software services based on iterative QoS prediction model. Future Gen. Comput. Syst. 105, 287–296 (2020). https://doi.org/10.1016/j.future.2019.12.005

    Article  Google Scholar 

  37. Afzal, S., Kavitha, G.: A hybrid multiple parallel queuing model to enhance QoS in cloud computing. Int. J. Grid High Perform. Comput. 12(1), 18–34 (2020). https://doi.org/10.4018/IJGHPC.2020010102

    Article  Google Scholar 

  38. Tarafdar, A., Debnath, M., Khatua, S., Das, R.K.: Energy and quality of service-aware virtual machine consolidation in a cloud data center. J. Supercomput. (2020). https://doi.org/10.1007/s11227-020-03203-3

    Article  Google Scholar 

  39. Hussain, W., Hussain, F., Hussain, O.: Allocating optimized resources in the cloud by a viable SLA model. In: Proceedings of the 2016 IEEE International Conference on Fuzzy Systems,FUZZ-IEEE 2016, pp. 1282–1287 (2016). https://doi.org/10.1109/FUZZ-IEEE.2016.7737836

  40. Karim, R., Ding, C., Miri, A., Rahman, M. S.: End-to-end QoS prediction model of vertically composed cloud services via tensor factorization. In: Proceedings of the 2015 International Conference on Cloud and Autonomic Computing, ICCAC 2015, pp. 158–168 (2015). https://doi.org/10.1109/ICCAC.2015.29

  41. Zhang, P., Han, Q., Li, W., Leung, H., Song, W.: A novel QoS prediction approach for cloud service based on bayesian networks model. In: Proceedings of the 2016 IEEE International Conference on Mobile Services (MS), IEEE pp.111–118 (2016). https://doi.org/10.1109/MobServ.2016.26

  42. Wu, X., Kumar, V., Ross, Q.J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.H., Steinbach, M., Hand, D.J., Steinberg, D.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14, 1–37 (2008). https://doi.org/10.1007/s10115-007-0114-2

    Article  Google Scholar 

  43. Cpu load generator (2018). https://github.com/GaetanoCarlucci/CPULoadGenerator

  44. DeGroot, M., Schervish, M.: Probability and statistics, pearson education (2011). https://books.google.com.mx/books?id=WbwsAAAAQBAJ

  45. Govindaraju, Y.: Repository for source code related to vm startup time model (2019). https://github.com/yathee/VMstModel

  46. Hsu, Chih-Wei, Chang, Chih-Chung, Lin, C.-J.: A practical guide to support vector classification. BJU Int. 101, 1396–400 (2008). arXiv:0-387-31073-8. https://doi.org/10.1177/02632760022050997

  47. Islam, S., Keung, J., Lee, K., Liu, A.: Empirical prediction models for adaptive resource provisioning in the cloud. (2012). https://doi.org/10.1016/j.future.2011.05.027

  48. Bruneo, D.: A stochastic model to investigate data center performance and qos in IaaS cloud computing systems. IEEE Trans. Parallel Distrib. Syst. (2014). https://doi.org/10.1109/TPDS.2013.67

    Article  Google Scholar 

  49. Rao, J., Wei, Y., Gong, J., Xu, C. Z.: DynaQoS: Model-free self-tuning fuzzy control of virtualized resources for QoS provisioning. In: Proceedings of the IEEE International Workshop on Quality of Service, IWQoS (2011). https://doi.org/10.1109/IWQOS.2011.5931341

  50. Lakra, A.V., Yadav, D.K.: Multi-objective tasks scheduling algorithm for cloud computing throughput optimization. Proc. Comput. Sci. 48, 107–113 (2015). https://doi.org/10.1016/j.procs.2015.04.158

    Article  Google Scholar 

  51. Došilović, F. Karlo, Brčić, M., Hlupić, N.: Explainable Artificial Intelligence: A survey, in 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE Press, London (2019). https://doi.org/10.23919/MIPRO.2018.8400040

Download references

Acknowledgements

Yatheendraprakash Govindaraju would like to thank the Mexican National Council for Science and Technology (CONACyT) for the full-time scholarship of his postgraduate studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yatheendraprakash Govindaraju.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindaraju, Y., Duran-Limon, H.A. & Mezura-Montes, E. A regression tree predictive model for virtual machine startup time in IaaS clouds. Cluster Comput 24, 1217–1233 (2021). https://doi.org/10.1007/s10586-020-03169-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-020-03169-0

Keywords