Abstract
Cloud computing provides effective ways to rapidly provision computing resources over the Internet. For a better management of resource provisioning, the system requires to predict service-level agreements (SLAs) such as virtual machine (VM) startup times under various conditions of computing resources. The VM startup time is an important SLA parameter, which can impact other SLA parameters such as service initiation time and VM scale out times. By predicting VM startup times, Cloud providers can improve Cloud users’ expectations. Various quality of service (QoS) parameters have been considered in different resource allocation frameworks. Also, there are several efforts addressing QoS prediction in cloud environments. However, little research has considered VM startup time as a QoS parameter. In this paper, we propose a regression tree model for predicting average, minimum, and maximum VM startup times. To test the efficiency of our model, we implemented the model in an OpenStack test environment. The test results show that our model predicts VM startup times with an average accuracy of 91.81%.






Similar content being viewed by others
Notes
Scale_up time is the time taken to increase a specific number of VMs.
Scale_down time is the time taken to decrease a specific number of VMs.
Overfitting leads to high noise interference. i.e. the model tries to incorporate noise in the training data to the learning phase and, as a consequence, reduces the prediction accuracy.
References
Buyya, R., Broberg, J., Goscinski, A.: Cloud Computing: Principles and Paradigms, p. 585. Wiley, London (2011)
Amazon compute service sla (2018). https://aws.amazon.com/compute/sla
Rackspace cloud sla (2018). https://www.rackspace.com/information/legal/cloud/sla
Microsoft azure sla (2018). https://azure.microsoft.com/en-us/support/legal/sla/?v=17.23h610
Google cloud sla (2018). https://cloud.google.com/compute/sla
Geebelen, D., Geebelen, K., Truyen, E., Michiels, S., Suykens, J.A.K., Vandewalle, J., Joosen, W.: QoS prediction for web service compositions using kernel-based quantile estimation with online adaptation of the constant offset. Inf. Sci. 268, 397–424 (2014). https://doi.org/10.1016/j.ins.2013.12.063
Xu, Y., Yin, J., Deng, S., Xiong, N.N., Huang, J.: Context-aware QoS prediction for web service recommendation and selection. Expert Syst. Appl. 53, 75–86 (2016). https://doi.org/10.1016/j.eswa.2016.01.010.620
Mao, M., Humphrey, M.: A performance study on the vm startup time in the cloud. In: Proceedings of the 2012 IEEE 5th International Conference on Cloud Computing, CLOUD 2012, IEEE, 2012, pp. 423–430 (2012).https://doi.org/10.1109/CLOUD.2012.103
Razavi, K., Razorea, L. M., Kielmann, T.: Reducing VM startup time and storage costs by VM image content consolidation, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 8374 LNCS, Springer, Berlin, Heidelberg, pp. 75–84 (2014). https://doi.org/10.1007/978-3-642-54420-08
Wu, H., Ren, S., Garzoglio, G., Timm, S., Altayo, G.B., Chadwick, K., Noh, S.Y.: A reference model for virtual machine launching overhead. IEEE Trans. Cloud Comput. 250–264 (2016)
Van, H. N., Tran, F. D., Menaud, J. M.: SLA-aware virtual resource management for cloud infrastructures. In: Proceedings of the IEEE 9th International Conference on Computer and Information Technology, CIT 2009, pp. 357–362 (2009). https://doi.org/10.1109/CIT.2009.109
Wu, L., Garg, S.K., Buyya, R.: SLA-based admission control for a Software-as-a-Service provider in Cloud computing environments. J. Comput. Syst. Sci. 78, 1280–1299 (2012). https://doi.org/10.1016/j.jcss.2011.12.014.645
Li, H., Zhu, G., Zhao, Y., Dai, Y., Tian, W.: Energy-efficient and QoS-aware model based resource consolidation in cloud data centers. Clust. Comput. (2017). https://doi.org/10.1007/s10586-017-0893-5
Wang, S., Zhou, A., Hsu, C.H., Xiao, X., Yang, F.: Provision of data-intensive services through energy-and QoS-aware virtual machine placement in national cloud data centers. IEEE Trans. Emerg. Topics Comput. (2016). https://doi.org/10.1109/TETC.2015.2508383
Singh, S., Chana, I.: QRSF: QoS-aware resource scheduling framework in cloud computing. J. Supercomput. (2014). https://doi.org/10.1007/s11227-014-1295-6
Samreen, F., Elkhatib, Y., Rowe, M., Blair, G. S.: Daleel: Simplifying cloud instance selection using machine learning. In: Proceedings of the NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium, pp. 557–563 (2016) arXiv:1602.02159. https://doi.org/10.1109/NOMS.2016.7502858
Ibrahim, A. A. Z. A., Kliazovich, D., Bouvry, P.: Service level agreement assurance between cloud services providers and cloud customers.v Proceedings of the 2016 16th IEEE/ACM International Symposium on Cluster,Cloud, and Grid Computing, CCGrid 2016 (2016). https://doi.org/10.1109/CCGrid.2016.56
Stantchev, V., Schrpfer, C.: Negotiating and enforcing QoS and SLAs in grid and cloud computing. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 5529, Springer, Berlin, Heidelberg, pp. 25–35 (2009). https://doi.org/10.1007/978-3-642-01671-4
Yadav, R., Zhang, W., Chen, H., Guo, T.: MuMs: Energy-aware VM selection scheme for cloud data center. In: Proceedings of the International Workshop on Database and Expert Systems Applications, DEXA, 2017-August, 132–136 (2017). https://doi.org/10.1109/DEXA.2017.43
Yadav, R., Zhang, W., Li, K., Liu, C., Shafiq, M., Karn, N.K.: An adaptive heuristic for managing energy consumption and overloaded hosts in a cloud data center. Wireless Netw. 26(3), 1905–1919 (2020). https://doi.org/10.1007/s11276-018-1874-1
Yadav, R., Zhang, W.: MeReg: mmanaging energy-SLA tradeoff for green mobile cloud computing. Wireless Commun. Mobile Comput. (2017). https://doi.org/10.1155/2017/6741972
Yadav, R., Zhang, W., Kaiwartya, O., Singh, P.R., Elgendy, I.A., Tian, Y.C.: Adaptive energy-aware algorithms for minimizing energy consumption and SLA violation in cloud computing. IEEE Access 6, 55923–55936 (2018). https://doi.org/10.1109/ACCESS.2018.2872750
Fu, X., Zhou, C.: Virtual machine selection and placement for dynamic consolidation in Cloud computing environment. Front. Comput. Sci. 9(2), 322–330 (2015). https://doi.org/10.1007/s11704-015-4286-8
Ma, H., Zhu, H., Hu, Z., Tang, W., Dong, P.: Multi-valued collaborative QoS prediction for cloud service via time series analysis. Future Gen. Comput. Syst. (2017). https://doi.org/10.1016/j.future.2016.10.012
Su, K., Xiao, B., Liu, B., Zhang, H., Zhang, Z.: TAP: A personalized trust-aware QoS prediction approach for web service recommendation. Knowl. Based Syst. (2017). https://doi.org/10.1016/j.knosys.2016.09.033
Chen, Z., Shen, L., Li, F.: Exploiting Web service geographical neighborhood for collaborative QoS prediction. Future Gen. Comput. Syst. (2017). https://doi.org/10.1016/j.future.2016.09.022
Zhang, W., Hu, Y., Zhang, Y., Raychaudhuri, D.: SEGUE: quality of service aware edge cloud service migration. In: Proceedings of the International Conference on Cloud Computing Technology and Science, CloudCom 2017, pp. 344–351 (2017). https://doi.org/10.1109/CloudCom.2016.0061.685
Tang, B., Tang, M.: Bayesian model-based prediction of service level agreement violations for cloud services. In: Proceedings of the 2014 International Symposium on Theoretical Aspects of Software Engineering, TASE 2014, pp. 170–176 (2014) https://doi.org/10.1109/TASE.2014.34.31
Ye, Z., Mistry, S.K., Bouguettaya, A., Dong, H.: Long-term QoS-aware cloud service composition using multivariate time series analysis. IEEE Trans. Serv. Comput. (2014). https://doi.org/10.1109/TSC.2014.2373366
Loh, W.Y.: Classification and regression trees. WIREs Data Mining Knowl. Discov. (2011). https://doi.org/10.1016/0169-7439(91)80113-5
Guerout, T., Medjiah, S., Da Costa, G., Monteil, T.: Quality of service modeling for green scheduling in Clouds. Sustain. Comput. Inf. Syst. (2014). https://doi.org/10.1016/j.suscom.2014.08.06
Alhamad, M., Dillon, T., Chang, E.: Conceptual SLA framework for cloud computing. In: 4th IEEE International Conference on Digital Ecosystems and Technologies—Conference Proceedings of IEEE-DEST 2010, DEST 2010, IEEE, pp. 606–610. (2010). https://doi.org/10.1109/DEST.2010.5610586.635
Baset, S.A.: Cloud SLAs. ACM SIGOPS Operating Systems Review (2012). https://doi.org/10.1145/2331576.2331586
Wu, L., Garg, S. K., Buyya, R.: SLA-based resource allocation for software as a service provider (SaaS) in cloud computing environments. In: Proceedings of the 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 195–204. (2011). https://doi.org/10.1109/CCGrid.2011.51.600
Shahidinejad, A., Ghobaei-Arani, M., Masdari, M.: Resource provisioning using workload clustering in cloud computing environment: a hybrid approach. Cluster Comput. (2020). https://doi.org/10.1007/s10586-020-03107-0
Chen, X., Wang, H., Ma, Y., Zheng, X., Guo, L.: Self-adaptive resource allocation for cloud-based software services based on iterative QoS prediction model. Future Gen. Comput. Syst. 105, 287–296 (2020). https://doi.org/10.1016/j.future.2019.12.005
Afzal, S., Kavitha, G.: A hybrid multiple parallel queuing model to enhance QoS in cloud computing. Int. J. Grid High Perform. Comput. 12(1), 18–34 (2020). https://doi.org/10.4018/IJGHPC.2020010102
Tarafdar, A., Debnath, M., Khatua, S., Das, R.K.: Energy and quality of service-aware virtual machine consolidation in a cloud data center. J. Supercomput. (2020). https://doi.org/10.1007/s11227-020-03203-3
Hussain, W., Hussain, F., Hussain, O.: Allocating optimized resources in the cloud by a viable SLA model. In: Proceedings of the 2016 IEEE International Conference on Fuzzy Systems,FUZZ-IEEE 2016, pp. 1282–1287 (2016). https://doi.org/10.1109/FUZZ-IEEE.2016.7737836
Karim, R., Ding, C., Miri, A., Rahman, M. S.: End-to-end QoS prediction model of vertically composed cloud services via tensor factorization. In: Proceedings of the 2015 International Conference on Cloud and Autonomic Computing, ICCAC 2015, pp. 158–168 (2015). https://doi.org/10.1109/ICCAC.2015.29
Zhang, P., Han, Q., Li, W., Leung, H., Song, W.: A novel QoS prediction approach for cloud service based on bayesian networks model. In: Proceedings of the 2016 IEEE International Conference on Mobile Services (MS), IEEE pp.111–118 (2016). https://doi.org/10.1109/MobServ.2016.26
Wu, X., Kumar, V., Ross, Q.J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.H., Steinbach, M., Hand, D.J., Steinberg, D.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14, 1–37 (2008). https://doi.org/10.1007/s10115-007-0114-2
Cpu load generator (2018). https://github.com/GaetanoCarlucci/CPULoadGenerator
DeGroot, M., Schervish, M.: Probability and statistics, pearson education (2011). https://books.google.com.mx/books?id=WbwsAAAAQBAJ
Govindaraju, Y.: Repository for source code related to vm startup time model (2019). https://github.com/yathee/VMstModel
Hsu, Chih-Wei, Chang, Chih-Chung, Lin, C.-J.: A practical guide to support vector classification. BJU Int. 101, 1396–400 (2008). arXiv:0-387-31073-8. https://doi.org/10.1177/02632760022050997
Islam, S., Keung, J., Lee, K., Liu, A.: Empirical prediction models for adaptive resource provisioning in the cloud. (2012). https://doi.org/10.1016/j.future.2011.05.027
Bruneo, D.: A stochastic model to investigate data center performance and qos in IaaS cloud computing systems. IEEE Trans. Parallel Distrib. Syst. (2014). https://doi.org/10.1109/TPDS.2013.67
Rao, J., Wei, Y., Gong, J., Xu, C. Z.: DynaQoS: Model-free self-tuning fuzzy control of virtualized resources for QoS provisioning. In: Proceedings of the IEEE International Workshop on Quality of Service, IWQoS (2011). https://doi.org/10.1109/IWQOS.2011.5931341
Lakra, A.V., Yadav, D.K.: Multi-objective tasks scheduling algorithm for cloud computing throughput optimization. Proc. Comput. Sci. 48, 107–113 (2015). https://doi.org/10.1016/j.procs.2015.04.158
Došilović, F. Karlo, Brčić, M., Hlupić, N.: Explainable Artificial Intelligence: A survey, in 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE Press, London (2019). https://doi.org/10.23919/MIPRO.2018.8400040
Acknowledgements
Yatheendraprakash Govindaraju would like to thank the Mexican National Council for Science and Technology (CONACyT) for the full-time scholarship of his postgraduate studies.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Govindaraju, Y., Duran-Limon, H.A. & Mezura-Montes, E. A regression tree predictive model for virtual machine startup time in IaaS clouds. Cluster Comput 24, 1217–1233 (2021). https://doi.org/10.1007/s10586-020-03169-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-020-03169-0