Skip to main content
Log in

Fair hop-by-hop interest rate control to mitigate congestion in named data networks

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Data retrieval in Named Data Networking (NDN) is based on content names irrespective of their hosting location. The NDN architecture introduces original naming, forwarding and caching techniques to improve data delivery efficiency. These distinctive techniques make the TCP congestion control scheme not suitable for the NDN architecture. In particular, the in-network caching and the multi-path forwarding used in the NDN architecture lead to fluctuations in the Round Trip Time (RTT) measurements. This makes the Retransmission TimeOut (RTO) an unreliable congestion indicator. Thus, the congestion problem in Named Data Networks deserves to be reconsidered. In this paper, we present a new congestion control algorithm, called IRNA (Interest Rate Notification and Adjustment), to mitigate the congestion problem in Named Data Networks while maintaining per flow and per consumer fairness property. More specifically, IRNA is a hop-by-hop scheme where each router monitors the occupation level of its outgoing queues to detect in advance potential congestion events. When the queue size is above or below a preset threshold, the router sends explicit notifications to its downstream nodes to specify the appropriate interest rate. Hence, by cooperatively adjusting the Interest transmission rate of each node and for each flow, IRNA succeeded to provide a fair transmission. We evaluated the performance of our solution using ndnSIM simulations. We compared IRNA to state-of-the-art hop-by-hop congestion control solution and we proved that IRNA managed to provide a faster congestion reaction and to achieve per flow and per consumer throughput fairness while maintaining a good bandwidth usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. We use interchangeably the terms “Consumer” and “Receiver”.

References

  1. Hadi, M.S., Lawey, A.Q., El-Gorashi, T.E.H., Elmirghani, J.E.H.: Big data analytics for wireless and wired network design: a survey. Comput. Netw. 132, 180–199 (2018). https://doi.org/10.1016/j.comnet.2018.01.016

    Article  Google Scholar 

  2. Song, U., Jeong, B., Park, S., et al.: Optimizing communication performance in scale-out storage system. Clust. Comput. 22, 335–346 (2019). https://doi.org/10.1007/s10586-018-2831-6

    Article  Google Scholar 

  3. Khan, A.Z., Qazi, I.A.: RecFlow: SDN-based receiver-driven flow scheduling in datacenters. Clust. Comput. 23(1), 289–306 (2020). https://doi.org/10.1007/s10586-019-02922-4

    Article  Google Scholar 

  4. Zhang, L., Afanasyev, A., Burke, J., Jacobson, V., Claffy, K.C., Crowley, P., Papadopoulos, C., Wang, L., Zhang, B.: Named data networking. Comput. Commun. Rev. 44(3), 66–73 (2014). https://doi.org/10.1145/2656877.2656887

    Article  Google Scholar 

  5. Kutscher, D., Eum, S., Pentikousis, K., Psaras, I., Corujo, D., Saucez, D., Schmidt, T., Waehlisch, M.: Information-Centric Networking (ICN) Research Challenges. RFC 7927, July 2016

  6. Kumar, S., Tiwari, R.: An efficient content placement scheme based on normalized node degree in content centric networking. Clust. Comput. (2020). https://doi.org/10.1007/s10586-020-03185-0

    Article  Google Scholar 

  7. Kalghoum, A., Saidane, L.A.: FCR-NS: a novel caching and forwarding strategy for Named Data Networking based on Software Defined Networking. Clust. Comput. 22, 981–994 (2019). https://doi.org/10.1007/s10586-018-02887-w

    Article  Google Scholar 

  8. Aboud, A., Touati, H.: Geographic interest forwarding in NDN-based wireless sensor networks. In: 2016 IEEE/ACS 13th International Conference on Computer Systems and Applications (AICCSA). pp. 1–8(2016). https://doi.org/10.1109/AICCSA.2016.7945683

  9. Rukmani, K.V., Nagarajan, N.: Enhanced channel allocation scheme for cross layer management in wireless network based on interference management. Clust. Comput. 22, 9825–9835 (2019). https://doi.org/10.1007/s10586-017-1596-7

    Article  Google Scholar 

  10. Aboud, A., Touati, H., Hnich, B.: Efficient forwarding strategy in a NDN-based internet of things. Clust. Comput. 22(3), 805–818 (2019). https://doi.org/10.1007/s10586-018-2859-7

    Article  Google Scholar 

  11. Wang, X., Cai, S.: Secure healthcare monitoring framework integrating NDN-based IoT with edge cloud. Future Gener. Comput. Syst. 112, 320–329 (2020). https://doi.org/10.1016/j.future.2020.05.042

    Article  Google Scholar 

  12. Khelifi, H., Luo, S., Nour, B., Moungla, M., Faheem, Y., Hussain, R., Ksentini, A.: Named data networking in vehicular ad hoc networks: state-of-the-art and challenges. IEEE Commun. Surv. Tutor. 22(1), 320–351 (2020). https://doi.org/10.1109/COMST.2019.2894816

    Article  Google Scholar 

  13. Muchtar, F., Abdullah, A.H., Al-Adhaileh, M., Zamli, K.Z.: Energy conservation strategies in Named Data Networking based MANET using congestion control: a review. J. Netw. Comput. Appl. 152, 102511 (2020). https://doi.org/10.1016/j.jnca.2019.102511

    Article  Google Scholar 

  14. Nan, G., Qiao, X., Tu, Y., Tan, W., Guo, L., Chen, J.: Design and implementation: the native web browser and server for content-centric networking. Comput. Commun. Rev. 45(5), 609–610 (2015). https://doi.org/10.1145/2829988.2790024

    Article  Google Scholar 

  15. Qiaoa, X., Rena, P., Chen, J., Tan, W., Blake, M.B., Xu, W.: Session persistence for dynamic web applications in Named Data Networking. J. Netw. Comput. Appl. 125, 220–235 (2019). https://doi.org/10.1016/j.jnca.2018.10.015

    Article  Google Scholar 

  16. Mejri, S., Touati, H., Kamoun F.: Are NDN congestion control solutions compatible with Big Data traffic? In: 2018 International Conference on High Performance Computing and Simulation, (HPCS), pp. 978–984(2018). https://doi.org/10.1109/HPCS.2018.00154

  17. Ullah, R., Rehman, M.A.U., Kim, B.S.: Design and implementation of an open source framework and prototype for named data networking-based edge cloud computing system. IEEE Access 7, 57741–57759 (2019). https://doi.org/10.1109/ACCESS.2019.2914067

    Article  Google Scholar 

  18. NDN Community Meeting 2020. https://www.nist.gov/news-events/events/2020/09/ndn-community-meeting/. Accessed 02 Mar 2021

  19. Gowtham, M.S., Subramaniam, K.: Congestion control and packet recovery for cross layer approach in MANET. Clust. Comput. 22, 12029–12036 (2019). https://doi.org/10.1007/s10586-017-1548-2

    Article  Google Scholar 

  20. Hashemi, S.N.S., Bohlooli, A.: Analytical modeling of multi-source content delivery in information-centric networks. Comput. Netw. 140, 152–162 (2018). https://doi.org/10.1016/j.comnet.2018.05.007

    Article  Google Scholar 

  21. Mejri, S., Touati, H., Kamoun F.: Hop-by-hop interest rate notification and adjustment in named data networks. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6 (2018)

  22. Mejri, S., Touati, H., Kamoun, F.: Preventing unnecessary interests retransmission in named data networking. In: 2016 IEEE International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–6 (2016). https://doi.org/10.1109/ISNCC.2016.7746058

  23. Hou, R., Zhang, L., Wu, T., Mao, T., Luo, J.: Bloom-filter-based request node collaboration caching for named data networking. Clust. Comput. 22, 6681–6692 (2019). https://doi.org/10.1007/s10586-018-2403-9

    Article  Google Scholar 

  24. Aloqaily, M., Al Ridhawi, I., Bany, Salameh H., Jararweh, Y.: Data and service management in densely crowded environments: challenges, opportunities, and recent developments. IEEE Commun. Mag. 57(4), 81–87 (2019). https://doi.org/10.1109/MCOM.2019.1800624

    Article  Google Scholar 

  25. Al Ridhawi, I., Mostafa, N., Kotb, Y., Aloqaily, M., Abualhaol, I.Y.: Data caching and selection in 5G networks using F2F communication. In: 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–6 (2017). https://doi.org/10.1109/PIMRC.2017.8292681

  26. Rozhnova, N., Fdida, S.: An effective hop-by-hop Interest shaping mechanism for CCN communications. In: INFOCOM Workshops, pp. 322–327 (2012). https://doi.org/10.1109/INFCOMW.2012.6193514

  27. Kato, T., Bandai, M., Yamamoto, M.: A congestion control method for named data networking with hop-by-hop window-based approach. IEICE Trans. Commun. 102–B(1), 97–110 (2019). https://doi.org/10.1587/transcom.2018EBP3045

    Article  Google Scholar 

  28. Nikzad, M., Jamshidi, K., Bohlooli, A.: A responsibility-based transport control for named data networking. Future Gener. Comput. Syst. 106, 518–533 (2020). https://doi.org/10.1016/j.future.2020.01.006

    Article  Google Scholar 

  29. Liu, T., Zhang, M., Zhu, J., et al.: ACCP: adaptive congestion control protocol in named data networking based on deep learning. Neural Comput. Appl. 31, 4675–4683 (2019). https://doi.org/10.1007/s00521-018-3408-2

    Article  Google Scholar 

  30. Schneider, K., Yi, C., Zhang, B., Zhang, L.: A practical congestion control scheme for named data networking. In: 2016 ACM 3rd ACM Conference on Information-Centric Networking (ACM-ICN), pp. 21–30 (2016). https://doi.org/10.1145/2984356.2984369

  31. NDN Testbed. http://named-Data.net/ndn-testbed/. Accessed 02 Mar 2021

  32. Nichols, K., Jacobson, V., McGregor, A., Iyengar, J.: Controlled Delay Active Queue Management. RFC 8289 (2017)

  33. S. Mastorakis, A. Afanasyev, I. Moiseenko, L. Zhang, ndnSIM 2.0: A new version of the NDN simulator for NS-3, NDN, Technical Report NDN-0028

  34. Kim, G.H., Cho, Y.Z.: Delay-aware BBR congestion control algorithm for RTT fairness improvement. IEEE Access 8, 4099–4109 (2020). https://doi.org/10.1109/ACCESS.2019.2962213

    Article  Google Scholar 

  35. Ma, L., Liu, X., Wang, H., Deng, X.: Congestion tracking control for multi-router TCP/AQM network based on integral backstepping. Comput. Netw. 175, 107278 (2020). https://doi.org/10.1016/j.comnet.2020.107278

    Article  Google Scholar 

  36. Hyoung, J.M., Lim, H.: On sharing an FIB table in named data networking. J. Appl. Sci. 9(15), 3178 (2019)

    Article  Google Scholar 

  37. Chiu, D.M., Jain, R.: Analysis of the increase and decrease algorithms for congestion avoidance in computer networks. Comput. Netw. ISDN Syst. 17(1), 1–14 (1989). https://doi.org/10.1016/0169-7552(89)90019-6

    Article  MATH  Google Scholar 

  38. Zhou, P., Yu, H., Sun, G., Luo, L., Luo, S., Ye, Z.: Flow-aware explicit congestion notification for datacenter networks. Clust. Comput. 22(4), 1431–1446 (2019). https://doi.org/10.1007/s10586-019-02919-z

    Article  Google Scholar 

Download references

Acknowledgements

We thank Natalya Rozhnova (LIP6-UPMC), author of the HoBHIS approach, for helpful feedback and many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifa Touati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touati, H., Mejri, S., Malouch, N. et al. Fair hop-by-hop interest rate control to mitigate congestion in named data networks. Cluster Comput 24, 2213–2230 (2021). https://doi.org/10.1007/s10586-021-03258-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03258-8

Keywords

Navigation