Skip to main content

Advertisement

Log in

Efficient user-channel pairing with power-domain sum-rate maximization in opportunistic hybrid OFDMA-NOMA IoT systems

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Non-orthogonal multiple access (NOMA) along with cognitive radio (CR) have been recently configured as potential solutions to fulfill the extraordinary demands of the fifth generation (5G) and beyond (B5G) networks and support the Internet of Thing (IoT) applications. Multiple users can be served within the same orthogonal domains in NOMA via power-domain multiplexing, whilst CR allows secondary users (SUs) to access the licensed spectrum frequency. This work investigates the possibility of combining orthogonal frequency division multiple access (OFDMA), NOMA, and CR, referred to as hybrid OFDMA-NOMA CR network. With this hybrid technology, the licensed frequency is divided into several channels, such as a group SUs is served in each channel based on NOMA technology. In particular, a rate-maximization framework is developed, at which user pairing at each channel, power allocations for each user, and secondary users activities are jointly considered to maximize the sum-rate of the hybrid OFDMA-NOMA CR network, while maintaining a set of relevant NOMA and CR constraints. The developed sum-rate maximization framework is NP-hard problem, and cannot be solved through classical approaches. Accordingly, we propose a two-stage approach; in the first stage, we propose a novel user pairing algorithm. With this, an iterative algorithm based on the sequential convex approximation is proposed to evaluate the solution of the non-convex rate-maximization problem, in the second stage. Results show that our proposed algorithm outperforms the existing schemes, and CR network features play a major role in deciding the overall network’s performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during this study.

Notes

  1. Under this assumption, the BS is required to perform one-step SIC. However, for more than two users in each pair, this requires SIC with higher steps at the expense of complexity [39, 41].

References

  1. Patnaik, B., Agarwal, A., Mali, S., Misra, G., Agarwal, K.: A review on non-orthogonal multiple access technique for emerging 5G networks and beyond. In Proc. of the IEEE International Conference on Smart Electronics and Communication (ICOSEC), pp. 698–703 (2020)

  2. Makki, B., Chitti, K., Behravan, A., Alouini, M.S.: A survey of NOMA: current status and open research challenges. IEEE Open J. Commun. Soc. 1, 179–189 (2020)

    Article  Google Scholar 

  3. Akbar, A., Jangsher, S., Bhatti, F.A.: NOMA and 5G emerging technologies: a survey on issues and solution techniques. Comput. Netw. 190, 107950 (2021)

    Article  Google Scholar 

  4. Chowdhury, M.Z., Shahjalal, M., Hasan, M., Jang, Y.M.: The role of optical wireless communication technologies in 5G/6G and IoT solutions: prospects, directions, and challenges. Appl. Sci. 9(20), 4367 (2019)

    Article  Google Scholar 

  5. Kim, J.H.: 6G and Internet of Things: a survey. J. Manag. Anal. 316–332 (2021)

  6. Wu, Y., Huang, H., Wang, C.X., Pan, Y.: 5G-Enabled Internet of Things. CRC Press, Boca Raton (2019)

    Book  Google Scholar 

  7. Al-Dulaimi, A., Wang, X., Chih-Lin, I.: 5G Networks: Fundamental Requirements, Enabling Technologies, and Operations Management. Wiley, New York (2018)

    Google Scholar 

  8. Liang, Y.C., Chen, K.C., Li, G.Y., Mahonen, P.: Cognitive radio networking and communications: an overview. IEEE Trans. Veh. Technol. 60(7), 3386–3407 (2011)

    Article  Google Scholar 

  9. Arjoune, Y., Kaabouch, N.: A comprehensive survey on spectrum sensing in cognitive radio networks: recent advances, new challenges, and future research directions. Sensors 19(1), 126 (2019)

    Article  Google Scholar 

  10. Masonta, M.T., Mzyece, M., Ntlatlapa, N.: Spectrum decision in cognitive radio networks: a survey. IEEE Commun Surv Tutor. 15(3), 1088–1107 (2012)

    Article  Google Scholar 

  11. Awin, F.A., Alginahi, Y.M., Abdel-Raheem, E., Tepe, K.: Technical issues on cognitive radio-based Internet of Things systems: A survey. IEEE Access. 7, 97887–97908 (2019)

    Article  Google Scholar 

  12. Tian, F., Chen, X., Zhang, Z.: Robust design for massive access in B5G cellular Internet of Things. In Proc. of the 11th IEEE International Conference on Wireless Communications and Signal Processing, pp. 1–6 (2020)

  13. Qi, Q., Chen, X., Zhong, C., Zhang, Z.: Integration of energy, computation and communication in 6G cellular internet of things. IEEE Commun. Lett. 24(6), 1333–1337 (2020)

    Article  Google Scholar 

  14. Xu, T., Darwazeh, I.: Non-orthogonal frequency division multiple access. In: Proc. of the 91st IEEE Vehicular Technology Conference, pp. 1–5 (2020)

  15. Tang, T., Mao, Y., Hu, G.: A fair power allocation approach to OFDM-based NOMA with consideration of clipping. Electronics 9(10), 1743 (2020)

    Article  Google Scholar 

  16. Van Nguyen, M.S., Do, D.T., Voznak, M.: Improving performance of far users in cognitive radio: exploiting NOMA and wireless power transfer. Energies 12(11), 2206 (2019)

    Article  Google Scholar 

  17. Qiao, Y., He, Y., Zhang, L., Yang, J., Zhou, L.: Performance analysis of multiple primary users CR-NOMA networks under partial relay selection. Adv. Wirel. Commun. Appl. 191, 85–91 (2021)

    Google Scholar 

  18. Ahmad, W.S.H.M.W., Radzi, N.A.M., Samidi, F.S., Ismail, A., Abdullah, F., Jamaludin, M.Z., Zakaria, M.: 5G technology: Towards dynamic spectrum sharing using cognitive radio networks. IEEE Access. 8, 14460–14488 (2020)

  19. Kumar, A., Kumar, K.: Multiple access schemes for Cognitive Radio networks: a survey. Phys. Commun. 38, 100953 (2020)

    Article  Google Scholar 

  20. Ghosh, J., Jayakody, D.N.K., Qaraqe, M.: Downlink capacity of OFDMA-CR based 5G femtocell networks. Physical Communication. 29, 329–335 (2018)

    Article  Google Scholar 

  21. Xu, Y., Yang, Y., Li, G., Wang, Z.: Joint subchannel and power allocation for cognitive NOMA systems with imperfect CSI. In Proc. of the IEEE Global Conference on Signal and Information Processing, pp. 1–5 (2019)

  22. Le, A.T., Do, D.T., Chang, W.T., Vu, C.T.: Cognitive IoT relaying NOMA networks with user clustering and imperfect SIC. Peer-to-Peer Netw. Appl. 1–11 (2021)

  23. Wei, X., Al-Obiedollah, H., Cumanan, K., Zhang, M., Tang, J., Wang, W., Dobre, O.A.: Resource allocation technique for hybrid TDMA-NOMA system with opportunistic time assignment. In Proc. of the IEEE International Conference on Communications Workshops, pp. 1–6 (2020)

  24. Al-Obiedollah, H., Cumanan, K., Burr, A.G., Tang, J., Rahulamathavan, Y., Ding, Z., Dobre, O.A.: On energy harvesting of hybrid TDMA-NOMA systems. In: Proc. of the IEEE Global Communications Conference, pp. 1–6 (2019)

  25. Xu, W., Li, X., Lee, C.H., Pan, M., Feng, Z.: Joint sensing duration adaptation, user matching, and power allocation for cognitive OFDM-NOMA systems. IEEE Trans. Wirel. Commun. 17(2), 1269–1282 (2017)

    Article  Google Scholar 

  26. Rahdari, F., Movahhedinia, N., Khayyambashi, M.R., Valaee, S.: QoE-aware power control and user grouping in Cognitive Radio OFDM-NOMA systems. Comput. Netw. 189, 107906 (2021)

    Article  Google Scholar 

  27. Manimekalai, T., Romera Joan, S., Laxmikandan, T.: Throughput maximization for underlay CR multicarrier NOMA network with cooperative communication. Electron. Telecommun. Res. Inst. J.42(6), 846–858 (2020)

  28. Na, Z., Wang, X., Shi, J., Liu, C., Liu, Y., Gao, Z.: Joint resource allocation for cognitive OFDM-NOMA systems with energy harvesting in green IoT. Ad Hoc Netw. 107, 102221 (2020)

    Article  Google Scholar 

  29. Wong, V.W., Schober, R., Ng, D.W.K., Wang, L.C.: Key Technologies for 5G Wireless Systems. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  30. Kizilirmak, R.C., Bizaki, H.K.: Non-orthogonal multiple access (NOMA) for 5G networks. Towards 5G Wirel. Netw. 83, 83–98 (2016)

  31. Rajendran, S., Calvo-Palomino, R., Fuchs, M., Van den Bergh, B., Cordobés, H., Giustiniano, D., Pollin, S., Lenders, V.: Electrosense: open and big spectrum data. IEEE Commun. Mag. 56(1), 210–217 (2017)

    Article  Google Scholar 

  32. Baruffa, G., Femminella, M., Pergolesi, M., Reali, G.: Comparison of MongoDB and Cassandra databases for spectrum monitoring as-a-service. IEEE Trans. Netw. Serv. Manag. 17(1), 346–360 (2019)

    Article  Google Scholar 

  33. Lin, T.H., Yang, G.C., Kwong, W.C.: A homogeneous multi-radio rendezvous algorithm for cognitive radio networks. IEEE Commun. Lett. 23(4), 736–739 (2019)

    Article  Google Scholar 

  34. Shariatzadeh, H., Maghrebi, S.G.: An effective algorithm for finding common control channel in cognitive radio ad hoc networks using a single transceiver and a backup channel. In Proc. of the IEEE International Symposium on Networks, Computers and Communications, pp. 1–6 (2018)

  35. Ding, Z., Schober, R., Poor, H.V.: Unveiling the importance of SIC in NOMA systems-Part 1: state of the art and recent findings. IEEE Commun. Lett. 24(11), 2373–2377 (2020)

    Article  Google Scholar 

  36. Kolodzy, P.J.: Interference temperature: a metric for dynamic spectrum utilization. Int. J. Netw. Manag. 16(2), 103–113 (2006)

    Article  Google Scholar 

  37. Quach, T.X., Tran, H., Uhlemann, E., Kaddoum, G., Tran, Q.A.: Power allocation policy and performance analysis of secure and reliable communication in cognitive radio networks. Wireless Netw. 25(4), 1477–1489 (2019)

    Article  Google Scholar 

  38. Ding, Z., Fan, P., Poor, H.V.: Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions. IEEE Trans. Veh. Technol. 65(8), 6010–6023 (2015)

    Article  Google Scholar 

  39. Sedaghat, M.A., Müller, R.R.: On user pairing in uplink NOMA. IEEE Trans. Wirel. Commun. 17(5), 3474–3486 (2018)

    Article  Google Scholar 

  40. Liang, W., Ding, Z., Li, Y., Song, L.: User pairing for downlink non-orthogonal multiple access networks using matching algorithm. IEEE Trans. Commun. 65(12), 5319–5332 (2017)

    Article  Google Scholar 

  41. Liu, Y., Qin, Z., Elkashlan, M., Gao, Y., Hanzo, L.: Enhancing the physical layer security of non-orthogonal multiple access in large-scale networks. IEEE Trans. Wirel. Commun. 16(3), 1656–1672 (2017)

    Article  Google Scholar 

  42. Al-Obiedollah, H.M., Cumanan, K., Thiyagalingam, J., Burr, A.G., Ding, Z., Dobre, O.A.: Energy efficient beamforming design for MISO non-orthogonal multiple access systems. IEEE Trans. Commun. 67(6), 4117–4131 (2019)

    Article  Google Scholar 

  43. Al-Obiedollah, H.M., Cumanan, K., Thiyagalingam, J., Tang, J., Burr, A.G., Ding, Z., Dobre, O.A.: Spectral-energy efficiency trade-off-based beamforming design for MISO non-orthogonal multiple access systems. IEEE Trans. Wirel. Commun. 19(10), 6593–6606 (2020)

    Article  Google Scholar 

  44. Nesterov, Y., Nemirovskii, A.: Interior-point polynomial algorithms in convex programming. Society for Industrial and Applied Mathematics (1994)

  45. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(1–3), 193–228 (1999)

    MathSciNet  MATH  Google Scholar 

  46. Beck, A., Ben-Tal, A., Tetruashvili, L.: A sequential parametric convex approximation method with applications to nonconvex truss topology design problems. J. Global Optim. 47(1), 29–51 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [HBS, SA-R, HA-O], Methodology: [HBS]; Formal analysis and investigation: [HBS, HA-O]; Writing-original draft preparation: [SA-R, HA-O]; Writing-review and editing: [HBS]

Corresponding author

Correspondence to Haythem Bany Salameh.

Ethics declarations

Conflict of Interest

We have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Razeq, S., Al-Obiedollah, H. & Bany Salameh, H. Efficient user-channel pairing with power-domain sum-rate maximization in opportunistic hybrid OFDMA-NOMA IoT systems. Cluster Comput 25, 2501–2514 (2022). https://doi.org/10.1007/s10586-021-03365-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03365-6

Keywords

Navigation