Skip to main content

Advertisement

Log in

Combined use of coral reefs optimization and multi-agent deep Q-network for energy-aware resource provisioning in cloud data centers using DVFS technique

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Big data processing, scientific calculations, and multimedia operations are some applications that require very complex time-consuming computations which cannot be performed on personal computers. Utilizing powerful cloud resources is a common method to address this problem. The amount of energy consumption of cloud data centers is an important challenge in these complex calculations, and reducing the energy consumption of cloud data centers is one of the most important goals of the researches in this area. The proposed method of this paper, called multi-agent deep Q-network with coral reefs optimization (MDQ-CR), combines the coral reefs optimization algorithm and multi-agent deep Q-network to reduce the energy consumption of data centers and cloud resources using the dynamic voltage and frequency scaling (DVFS) technique. The MDQ-CR has two main phases. The first phase exploits coral reefs optimization algorithm with a short-term view, and the second phase uses deep Q-network with a long-term view. The Markov game model is used to lead the learning agents to converge to the global optimal solution. Since processors consume the highest amount of energy of cloud compared to the other resources, the proposed method focuses on reducing the processors’ energy consumption. Reducing the voltage and frequency of processors, considering expiration times of their tasks, can reduce their energy consumption significantly. The empirical experiments show that the proposed method can save energy about 89% compared to completely randomized methods, and about 20% compared to the two recent methods of the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

My manuscript has no associated data.

References

  1. Ahmad, R.W., Gani, A., Ab, S.H., Shiraz, H.M., Yousafzai, A., Xia, F.: A survey on virtual machine migration and server consolidation frameworks for cloud data centers. J. Netw. Comput. Appl. 52, 11–25 (2015)

    Google Scholar 

  2. Alkhanak, E.N., Lee, S.P., Khan, S.U.: Cost-aware challenges for workflow scheduling approaches in cloud computing environments: taxonomy and opportunities. Future Gener. Comput. Syst. 50, 3–21 (2015)

    Google Scholar 

  3. Manvi, S.S., Shyam, G.K.: Resource management for Infrastructure as a Service (IaaS) in cloud computing: a survey. J. Netw. Comput. Appl. 41, 424–440 (2014)

    Google Scholar 

  4. Ghomi, E.J., Rahmani, A.M., Qader, N.N.: Load-balancing algorithms in cloud computing: a survey. J. Netw. Comput. Appl. 88, 50–71 (2017)

    Google Scholar 

  5. Singh, S., Jeong, Y.-S., Park, J.H.: A survey on cloud computing security: Issues, threats, and solutions. J. Netw. Comput. Appl. 75, 200–222 (2016)

    Google Scholar 

  6. Hameed, A., Khoshkbarforoushha, A., Ranjan, R., Jayaraman, P.P., Kolodziej, J., Balaji, P., Zeadally, S., Malluhi, Q.M., Tziritas, N., Vishnu, A., Khan, S.U.: A survey and taxonomy on energy efficient resource allocation techniques for cloud computing systems. Computing 98, 751–774 (2016)

    MathSciNet  Google Scholar 

  7. Ebrahimi, K., Jones, G.F., Fleischer, A.S.: A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities. Renew. Sustain. Energy Rev. 31, 622–638 (2014)

    Google Scholar 

  8. Mishra, S.K., Puthal, D., Sahoo, B., Jena, S.K., Obaidat, M.S.: An adaptive task allocation technique for green cloud computing. J. Supercomput. 74, 370–385 (2018)

    Google Scholar 

  9. Cisco Global Cloud Index. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper

  10. Khattar, N., Sidhu, J., Singh, J.J.: Toward energy-efficient cloud computing: a survey of dynamic power management and heuristics-based optimization techniques. J. Supercomput. (2019). https://doi.org/10.1007/s11227-019-02764-2

    Article  Google Scholar 

  11. Khan, A.A., Zakarya, M., Khan, R.: Energy-aware dynamic resource management in elastic cloud datacenters. Simul. Model. Pract. Theory 92, 82–99 (2019)

    Google Scholar 

  12. Chunxia, Y., Shunfu, J.: An energy-saving strategy based on multi-server vacation queuing theory in cloud data center. J. Supercomput. 74, 6766–6784 (2018)

    Google Scholar 

  13. Zhong, W., Zhuang, Y., Sun, J., Gu, J.: A load prediction model for cloud computing using PSO-based weighted wavelet support vector machine. Appl. Intell. 48, 4072–4083 (2018)

    Google Scholar 

  14. Sofia, A.S., GaneshKumar, P.: Multi-objective task scheduling to minimize energy consumption and makespan of cloud computing using NSGA-II. J. Netw. Syst. Manag. 26, 463–485 (2018)

    Google Scholar 

  15. Chaabouni, T., Khemakhem, M.: Energy management strategy in cloud computing: a perspective study. J. Supercomput. 74, 6569–6597 (2018)

    Google Scholar 

  16. Salcedo-Sanz, S., Del Ser, J., Landa-Torres, I., Gil-López, S., Portilla-Figueras, J.A.: The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems. Sci. World J. (2014). https://doi.org/10.1155/2014/739768

    Article  Google Scholar 

  17. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.: Playing atari with deep reinforcement learning. In: NIPS Deep Learning Workshop. 2013

  18. Etinski, M., Corbalan, J., Labarta, J., Valero, M.: Understanding the future of energy-performance trade-off via DVFS in HPC environments. J. Parallel Distrib. Comput. 72, 579–590 (2012)

    Google Scholar 

  19. Mahmoud, H., Thabet, M., Khafagy, M.H., Omara, F.A.: An efficient load balancing technique for task scheduling in heterogeneous cloud environment. Clust. Comput. (2021). https://doi.org/10.1007/s10586-021-03334-z

    Article  Google Scholar 

  20. Muteeh, A., Sardaraz, M., Tahir, M.: MrLBA: multi-resource load balancing algorithm for cloud computing using ant colony optimization. Clust. Comput. (2021). https://doi.org/10.1007/s10586-021-03322-3

    Article  Google Scholar 

  21. Zhang, X., Wu, T., Chen, M., Wei, T., Zhou, J., Hu, S., Buyya, R.: Energy-aware virtual machine allocation for cloud with resource reservation. J. Syst. Softw. 147, 147–161 (2019)

    Google Scholar 

  22. Al-Dulaimy, A., Itani, W., Zantout, R., Zekri, A.: Type-aware virtual machine management for energy efficient cloud data centers. Sustain. Comput. 19, 185–203 (2018)

    Google Scholar 

  23. Kumar, N., Vidyarthi, D.P.: A novel energy-efficient scheduling model for multi-core systems. Clust. Comput. 24, 643–666 (2021)

    Google Scholar 

  24. Safari, M., Khorsand, R.: PL-DVFS: combining power-aware list-based scheduling algorithm with DVFS technique for real-time tasks in cloud computing. J. Supercomput. 74, 5578–5600 (2018)

    Google Scholar 

  25. Juiz, C., Bermejo, B.: The CiS2: a new metric for performance and energy trade-off in consolidated servers. Clust. Comput. 23, 2769–2788 (2020)

    Google Scholar 

  26. Sharma, Y., Si, W., Sun, D., Javadi, B.: Failure-aware energy-efficient VM consolidation in cloud computing systems. Future Gener. Comput. Syst. 94, 620–633 (2019)

    Google Scholar 

  27. Dimiduk, D.M., Holm, E.A., Niezgoda, S.R.: Perspectives on the impact of machine learning, deep learning, and artificial intelligence on materials, processes, and structures engineering. Integr. Mater. Manuf. Innov. 7(3), 157–172 (2018)

    Google Scholar 

  28. Ding, D., Fan, X., Zhao, Y., Kang, K., Yin, Q., Zeng, J.: Q-learning based dynamic task scheduling for energy-efficient cloud computing. Future Gener. Comput. Syst. 108, 361–371 (2020)

    Google Scholar 

  29. Zhang, Q., Lin, M., Yang, L.T., Chen, Z., Li, P.: Energy-efficient scheduling for real-time systems based on deep Q-learning model. IEEE Trans. Sustain. Comput. 4(1), 132–141 (2017)

    Google Scholar 

  30. Peng, Z., Lin, J., Cui, D., Li, O., He, J.: A multi-objective trade-off framework for cloud resource scheduling based on the Deep Q-network algorithm. Clust. Comput. 23, 2753–2767 (2020)

    Google Scholar 

  31. Zhang, Q., Lin, M., Yang, L.T., Chen, Z., Khan, S.U., Li, P.: A double deep Q-learning model for energy-efficient edge scheduling. IEEE Trans. Serv. Comput. 12(5), 739–749 (2018)

    Google Scholar 

  32. Shamshirband, S., Fathi, M., Chronopoulos, A.T., Montieri, A., Palumbo, F., Pescapè, A.: Computational intelligence intrusion detection techniques in mobile cloud computing environments: review, taxonomy, and open research issues. J. Inf. Security Appl. 55, 102582 (2020)

    Google Scholar 

  33. Wang, J., Jiang, C., Zhang, K., Hou, X., Ren, Y., Qian, Y.: Distributed Q-learning aided heterogeneous network association for energy-efficient IIoT. IEEE Trans. Industr. Inf. 16(4), 2756–2764 (2019)

    Google Scholar 

  34. Jena, U.K., Das, P.K., Kabat, M.R.: Hybridization of meta-heuristic algorithm for load balancing in cloud computing environment. J. King Saud Univ. (2020)

  35. Shaw, R., Howley, E., Barrett, E.: Applying Reinforcement Learning towards automating energy efficient virtual machine consolidation in cloud data centers. Inf. Syst. 2021, 101722 (2021)

    Google Scholar 

  36. Liu, N., Li, Z., Xu, J., Xu, Z., Lin, S., Qiu, O., Tang, J., Wang, Y., A hierarchical framework of cloud resource allocation and power management using deep reinforcement learning. In 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 372–382. IEEE, 2017

  37. Jaiswal, A., Kumar, S., Dohare, U. Green Computing in Heterogeneous Internet of Things: Optimizing Energy Allocation Using SARSA-based Reinforcement Learning. In 2020 IEEE 17th India Council International Conference (INDICON), pp. 1–6. IEEE, 2020

  38. Zhao, R., Wang, X., Xia, J., Fan, L.: Deep reinforcement learning based mobile edge computing for intelligent Internet of Things. Phys. Commun. 43, 101184 (2020)

    Google Scholar 

  39. Duggan, M., Flesk, K., Duggan, J., Howley, E., Barrett. E. A reinforcement learning approach for dynamic selection of virtual machines in cloud data centres. In 2016 Sixth International Conference on Innovative Computing Technology (INTECH), pp. 92–97. IEEE, 2016

  40. Lin, X., Wang, Y., Pedram, M. A reinforcement learning-based power management framework for green computing data centers. In 2016 IEEE International Conference on Cloud Engineering (IC2E), pp. 135–138. IEEE, 2016

  41. Asghari, A., Sohrabi, M.K., Yaghmaee, F.: Online scheduling of dependent tasks of cloud’s workflows to enhance resource utilization and reduce the makespan using multiple reinforcement learning-based agents. Soft. Comput. 24(21), 16177–16199 (2020)

    Google Scholar 

  42. Asghari, A., Sohrabi, M.K., Yaghmaee, F.: A cloud resource management framework for multiple online scientific workflows using cooperative reinforcement learning agents. Computer Networks (2020): 107340

  43. Asghari, A., Sohrabi, M.K., Yaghmaee, F.: Task scheduling, resource provisioning, and load balancing on scientific workflows using parallel SARSA reinforcement learning agents and genetic algorithm. J. Supercomput. 77(3), 2800–2828 (2021)

    Google Scholar 

  44. Yang, J., Jiang, B., Lv, Z., Choo, K.-K.R.: A task scheduling algorithm considering game theory designed for energy management in cloud computing. Future Gener. Comput. Syst. 105, 985–992 (2020)

    Google Scholar 

  45. Sofia, A.S., GaneshKumar, P.: Multi-objective task scheduling to minimize energy consumption and makespan of cloud computing using NSGA-II. J. Netw. Syst. Manag. 26(2), 463–485 (2018)

    Google Scholar 

  46. Li, K.: Scheduling parallel tasks with energy and time constraints on multiple manycore processors in a cloud computing environment. Future Gener. Comput. Syst. 82, 591–605 (2018)

    Google Scholar 

  47. Jararweh, Y., Issa, M.B., Daraghmeh, M., Al-Ayyoub, M., Alsmirat, M.A.: Energy efficient dynamic resource management in cloud computing based on logistic regression model and median absolute deviation. Sustain. Comput. 19, 262–274 (2018)

    Google Scholar 

  48. Han, S., Min, S., Lee, H.: Energy efficient VM scheduling for big data processing in cloud computing environments. J. Ambient Intell. Hum. Comput. (2019). https://doi.org/10.1007/s12652-019-01361-8

    Article  Google Scholar 

  49. Safari, M., Khorsand, R.: Energy-aware scheduling algorithm for time-constrained workflow tasks in DVFS-enabled cloud environment. Simul. Model. Pract. Theory 87, 311–326 (2018)

    Google Scholar 

  50. Moghaddam, M.J., Esmaeilzadeh, A., Ghavipour, M., Khadem-Zadeh, A.: Minimizing virtual machine migration probability in cloud computing environments. Clust. Comput. 23, 3029–3038 (2020)

    Google Scholar 

  51. Lu, Y., Sun, N.: An effective task scheduling algorithm based on dynamic energy management and efficient resource utilization in green cloud computing environment. Clust. Comput. 22(1), 513–520 (2019)

    MathSciNet  Google Scholar 

  52. Garg, R., Mittal, M.: Reliability and energy efficient workflow scheduling in cloud environment. Clust. Comput. 22(4), 1283–1297 (2019)

    Google Scholar 

  53. Dong, S., Jain, R.: Energy-efficient scheme based on user task characteristic in virtual cloud platform. Clust. Comput. 23, 1125–1135 (2020)

    Google Scholar 

  54. Kumar, G.G., Vivekanandan, P.: Energy efficient scheduling for cloud data centers using heuristic based migration. Clust. Comput. 22, 14073–14080 (2019)

    Google Scholar 

  55. Garg, N., Singh, D., Goraya, M.S.: Energy and resource efficient workflow scheduling in a virtualized cloud environment. Clust. Comput. 24, 767–797 (2021)

    Google Scholar 

  56. Ibrahim, H., Aburukba, R.O., El-Fakih, K.: An integer linear programming model and adaptive genetic algorithm approach to minimize energy consumption of cloud computing data centers. Comput. Electr. Eng. 67, 551–565 (2018)

    Google Scholar 

  57. Fard, S.Y.Z., Sohrabi, M.K., Ghods, V.: Energy-aware and proactive host load detection in virtual machine consolidation. Inf. Technol. Control 50(2), 332–341 (2021)

    Google Scholar 

  58. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. MIT Press, New York (2018)

    MATH  Google Scholar 

  59. Barto, A.G., Mahadevan, R.: Recent advances in hierarchical reinforcement learning. Discret. Event Dyn. Syst. 13(1–2), 41–77 (2003)

    MathSciNet  MATH  Google Scholar 

  60. Watkins, C.J.C.H., Dayan, C.P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)

    MATH  Google Scholar 

  61. Abbasi, A.A., Javed, S., Shamshirband, S.: An intelligent memory caching architecture for data-intensive multimedia applications. Multimed.Tools Appl. 80, 16743–16761 (2021)

    Google Scholar 

  62. Wang, Y., Liu, H., Zheng, W., Xia, Y., Li, Y., Chen, P., Guo, K., Xie, H.: Multi-objective workflow scheduling with deep-Q-network-based multi-agent reinforcement learning. IEEE Access 7, 39974–39982 (2019)

    Google Scholar 

  63. Rahmani, F., Joloudari, J.H., Shamshirband, S., Mostafavi, S.A.: Game theory and Evolutionary-optimization methods applied to resource allocation problems in emerging computing environments: a survey. arXiv preprint arXiv:2012.11355 (2020)

  64. Littman, M.L.: Value-function reinforcement learning in Markov games. Cogn. Syst. Res. 2(1), 55–66 (2001)

    Google Scholar 

  65. Sohrabi, M.K., Azgomi, H.A.: Survey on the combined use of optimization methods and game theory. Arch. Comput. Methods Eng. 27, 59–80 (2020)

    MathSciNet  Google Scholar 

  66. Arroba, P., Moya, J.M., Ayala, J.L., Buyya, R.: Dynamic voltage and frequency scaling-aware dynamic consolidation of virtual machines for energy efficient cloud data centers. Concurr. Comput. 29, e4067 (2017)

    Google Scholar 

  67. Tang, Z., Qi, L., Cheng, Z., et al.: An energy-efficient task scheduling algorithm in DVFS-enabled cloud environment. J. Grid Comput. 14, 55–74 (2016)

    Google Scholar 

  68. Mishra, S.K., Parida, P.P., Sahoo, S., Sahoo, B., Jena, S.K.: Improving energy usage in cloud computing using DVFS. In: Progress in Advanced Computing and Intelligent Engineering, pp. 623–632. Singapore, Springer (2018)

    Google Scholar 

  69. Shirvani, M.H., Rahmani, A.M., Sahafi, A.: A survey study on virtual machine migration and server consolidation techniques in DVFS-enabled cloud datacenter: taxonomy and challenges. J. King Saud Univ. Comput. Inf. Sci. 32(3), 267–286 (2020)

    Google Scholar 

  70. Wu, T., Gu, H., Zhou, J., Wei, T., Liu, X., Chen, M.: Soft error-aware energy-efficient task scheduling for workflow applications in DVFS-enabled cloud. J. Syst. Architect. 84, 12–27 (2018)

    Google Scholar 

  71. Azgomi, H., Sohrabi, M.K.: A novel coral reefs optimization algorithm for materialized view selection in data warehouse environments. Appl. Intell. 49, 3965–3989 (2019)

    Google Scholar 

  72. Asghari, A., Sohrabi, M.K.: Combined use of coral reefs optimization and reinforcement learning for improving resource utilization and load balancing in cloud environments. Computing 103, 1545–1567 (2021)

    Google Scholar 

  73. Ahuja, S.P., Muthiah, K.: Advances in green cloud computing. In: Green computing strategies for competitive advantage and business sustainability, pp. 1–16. IGI Global (2018)

  74. Zakarya, M., Gillam, L.: Energy efficient computing, clusters, grids and clouds: a taxonomy and survey. Sustain. Comput. 14, 13–33 (2017)

    Google Scholar 

  75. Ali, S.A., Affan, M., Alam, M. A study of efficient energy management techniques for cloud computing environment. 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence), 2019, pp. 13–18

  76. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.: Live migration of virtual machines. In Proceedings of the 2nd Conference on Symposium on Networked Systems Design & Implementation-Volume 2, pp. 273–286. 2005

  77. Davis, L.: Applying adaptive algorithms to epistatic domains. In: IJCAI: Proceedings of the 9th International Joint Conference on Artificial Intelligence, pp. 162–164  (1985)

  78. Xu, F., Yang, F., Zhao, C., Wu, S.: Deep reinforcement learning based joint edge resource management in maritime network. China Commun. 17(5), 211–222 (2020)

    Google Scholar 

  79. Saadatfar, H., Khosravi, S., Joloudari, J.H., Mosavi, A., Shamshirband: S. A new K-nearest neighbors classifier for big data based on efficient data pruning. Mathematics 8(2), 286 (2020)

    Google Scholar 

  80. Badshah, A., Ghani, A., Shamshirband, S., Aceto, G., Pescapè, A.: Performance-based service-level agreement in cloud computing to optimise penalties and revenue. IET Commun. 14(7), 1102–1112 (2020)

    Google Scholar 

  81. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, A.F., Buyya, C.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software 41(1), 23–50 (2011)

    Google Scholar 

  82. http://www.cloudbus.org/

  83. Chen, W., Deelman, E., Workflowsim: A toolkit for simulating scientific workflows in distributed environments. In: IEEE 8th International Conference on E-science (e-science), 2012, pp. 1–8. IEEE, 2012

  84. https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator. Accessed 5 Jan 2020

  85. Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., Vahi, K.: Characterizing and profiling scientific workflows. Future Gener. Comput. Syst. 29(3), 682–692 (2013)

    Google Scholar 

  86. Vasile, M.-A., Pop, F., Tutueanu, R.I., Cristea, V., Kołodziej, J.: Resource-aware hybrid scheduling algorithm in heterogeneous distributed computing. Future Gener. Comput. Syst. 51, 61–71 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Karim Sohrabi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asghari, A., Sohrabi, M.K. Combined use of coral reefs optimization and multi-agent deep Q-network for energy-aware resource provisioning in cloud data centers using DVFS technique. Cluster Comput 25, 119–140 (2022). https://doi.org/10.1007/s10586-021-03368-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03368-3

Keywords

Navigation