Skip to main content
Log in

Adaptive bandwidth adjustment for resource constrained services in fog queueing system

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In the past decade, the cloud environment has emerged as a resource-enriched technology for computational modeling. Most cloud data centers are deployed far from the device layer, which may cause higher service delivery time. Therefore, Fog servers are implemented to retain the commitment of minimum service delivery time. The computational resources (processing unit, memory, storage) and network bandwidth are to be appropriately scheduled to make an efficient system. For delay and resource-constrained devices, the essential issues include minimum service latency and improved system performance by offloading non-sensitive devices to the cloud layer. In this study, an adaptive bandwidth adjustment technique is proposed considering the sensitivity of the applications and load on the multiple queues at the access point based on which, a compelling dynamic bandwidth ratio is calculated. Further, blocking probability of task and task dropping probability is used as task offloading probability to overcome the dropping ratio of type-II applications. The random early detection (RED) algorithm is implemented in queueing management to maximize the system performance. Extensive simulation results highlighted that the proposed model significantly improves the system performance in terms of network delay, queue delay, and overall response time over traditional algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

This work cites wherever required the data and material used from other sources.

References

  1. Chen, L., Guo, K., Fan, G., Wang, C., Song, S.: Resource constrained profit optimization method for task scheduling in edge cloud. IEEE Access 8, 118638–118652 (2020)

    Article  Google Scholar 

  2. Guo, M., Guan, Q., Ke, W.: Optimal scheduling of VMs in queueing cloud computing systems with a heterogeneous workload. IEEE Access 6, 15178–15191 (2018)

    Article  Google Scholar 

  3. Mahmoud, M.M.E., Rodrigues, J.P.C., Saleem, K., Al-Muhtadi, J., Kumar, N., Korotaev, V.: Towards energy-aware fog-enabled cloud of things for healthcare. Comput. Electr. Eng. 67, 58–69 (2018)

    Article  Google Scholar 

  4. Elashri, S., Azim, A.: Energy-efficient offloading of real-time tasks using cloud computing. Clust. Comput. 23, 3273–3288 (2020)

    Article  Google Scholar 

  5. Dastjerdi, A.V, Gupta, H., Calheiros, R.N., Ghosh, S.K., Buyya, R.: Fog computing: principles, architectures, and applications. In: Chapter 4—Internet of Things: Principles and Paradigms, pp. 61–75 (2016)

  6. Lei, L., Guan, Q., Jin, L., Guo, M.: Resource allocation and task offloading for heterogeneous real-time tasks with uncertain duration time in a fog queueing system. IEEE Access 7, 9912–9925 (2019)

    Article  Google Scholar 

  7. Yi, C., Cai, J., Su, Z.: A multi-user mobile computation offloading and transmission scheduling mechanism for delay-sensitive applications. IEEE Trans. Mobile Comput. 19(1), 29–43 (2020)

    Article  Google Scholar 

  8. Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B.: A survey on mobile edge computing: the communication perspective. IEEE Commun. Surv. Tutor. 19(4), 2322–2358 (2017)

    Article  Google Scholar 

  9. Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., Wang, W.: A survey on mobile edge networks: convergence of computing, caching and communications. IEEE Access 5, 6757–6779 (2017)

    Article  Google Scholar 

  10. Mach, P., Becvar, Z.: Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun. Surv. Tutor. 19(3), 1628–1656 (2017)

    Article  Google Scholar 

  11. Chi, Z., Li, Y., Sun, H., Yao, Y., Zhu, T.: Concurrent cross-technology communication among heterogeneous IoT devices. 27(3), 932 – 947 (2019)

  12. Singh, P., Agrawal, R.: A customer centric best connected channel model for heterogeneous and IoT networks. J. Org. End User Comput. 30, 32–50 (2018)

    Article  Google Scholar 

  13. Agrawal, R.: Performance of routing strategy (Bit Error Based) in fading environments for mobile adhoc networks. In : IEEE International Conference on Personal Wireless Communications, pp. 550–554 (2005)

  14. Ren, J., Wu, G., Li, X., Pirozmand, P., Obaidat, M.S.: Probabilistic response-time analysis for real-time systems in body area sensor networks. Int. J. Commun. syst. 28(16), 2145–2166 (2015)

    Article  Google Scholar 

  15. Casado-vara, R., Chamoso, P., Prieta, F.D.L., Prieto, J., Corchado, J.M.: Non-linear adaptive closed-loop control system for improved efficiency in IoT-blockchain management. Inform. Fusion 49, 227–239 (2019)

    Article  Google Scholar 

  16. Karthick, G.S., Pankajavalli, P.B.: A review on human healthcare internet of things: a technical perspective. SN Comput. Sci. 1(198), 1–19 (2020)

    Google Scholar 

  17. Tan, B., Tian, O. : Short paper: using BSN for tele-health application in upper limb rehabilitation. In: Proceedings of IEEE World Forum Internet Things (WF-IoT), pp. 169-170 (2014)

  18. Rodrigues, J.J.P.C., Segundo, D., Junqueira, H., Sabino, M., Prince, R.M., Al-Muhtadi, J., Albuquerque, V.: Enabling technologies for the internet of health things. IEEE Access 6, 13129–13141 (2017)

    Article  Google Scholar 

  19. Liang, S., Zilong, Y., Hai, S., Trinidad, M.: Childhood autism language training system and internet-of-things-based centralized training center. (2011)

  20. Farahani, B., Firouzi, F., Chang, V., Badaroglu, M., Constant, N., Mankodiya, K.: Towards fog-driven IoT eHealth: promises and challenges of IoT in medicine and healthcare. Future Gener. Comput. Syst. 78(2), 659–676 (2018)

    Article  Google Scholar 

  21. Dogancay, K.: Introduction: partial-update adaptive signal processing. In : Chapter 1—Design, Analysis and Implementation, pp. 1–23 (2009)

  22. Li, J., Jin, J., Yuan, D., Palaniswami, M., Moessner, K.: EHOPES: Data-centered fog platform for smart living. In : 25th Int. Tele. Netw. AND Apps. Conf. (ITNAC 2015), pp. 308–313, Piscataway, NJ (2015)

  23. Rahmani, A.M., Gia, T.N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., Liljeberg, P.: Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: a fog computing approach. Future Gener. Comput. Syst. 78, 641–658 (2018)

    Article  Google Scholar 

  24. Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R.H., Morrow, M.J., Polakos, P.A.: A comprehensive survey on fog computing: State-of-the-Art and research challenges. IEEE Commun. Surv. Tutor. 20(1), 416–464 (2018)

    Article  Google Scholar 

  25. Singh, P., Kaur, A., Gupta, P., Gill, S.S., Jyoti, K.: RHAS: robust hybrid auto-scaling for web applications in cloud computing. Clust. Comput. 24, 717–737 (2021)

    Article  Google Scholar 

  26. Xiang, M., Jiang, Y., Xia, Z., Huang, C.: Consistent hashing with bounded loads and virtual nodes-based load balancing strategy for proxy cache cluster. Clust. Comput. 23, 3139–3155 (2020)

    Article  Google Scholar 

  27. Abedin, S.F., Alam, M.G.R., Kazmi, S.M.A., Tran, N.H., Niyato, D., Hong, C.S.: Resource allocation for ultra-reliable and enhanced mobile broadband IoT applications in fog network. IEEE Trans. Commun. 67, 489–502 (2019)

    Article  Google Scholar 

  28. Abedin, S.F., Bairagi, A.K., Munir, M.S., Tran, N.H., Hong, C.S.: Fog load balancing for massive machine type communications: a game and transport theoretic approach. IEEE Access 7, 4204–4218 (2019)

    Article  Google Scholar 

  29. Mukherjee, A., De, D., Roy, D.G.: Power and latency aware cloudlet selection strategy for multi-cloudlet environment. IEEE Trans. Cloud Comput. 7(1), 141–154 (2019)

    Article  Google Scholar 

  30. Samanta, A., Chang, Z, Han, Z.: Latency-oblivious distributed task scheduling for mobile edge computing. In: IEEE Global Comm. Conf. (GLOBECOM), pp. 1–7, Abu Dhabi, United Arab Emirssates (2018)

  31. Mao, Y., Zhang, J., Letaief, K. B.: Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE J. Select. Areas Commun. 34(12), 3590-3605 (2016)

  32. Yang, L., Zhang, H., Li, M., Guo, J., Ji, H.: Mobile edge computing empowered energy efficient task offloading in 5G. IEEE Trans. Veh. Tech. 67(7), 6398–6409 (2018)

    Article  Google Scholar 

  33. Zhao, P., Tian, H., Qin, C., Nie, G.: Energy-saving offloading by jointly allocating radio and computational resources for mobile edge computing. IEEE Access 5, 11255–11268 (2017)

    Article  Google Scholar 

  34. Chunlin, L., Jianhang, T., Tang, H., Luo, Y.: Collaborative cache allocation and task scheduling for data-intensive applications in edge computing environment. Future Gener. Comput. Syst. 95, 249–264 (2019)

    Article  Google Scholar 

  35. Lin, K., Pankaj, S., Wang, D.: Task offloading and resource allocation for edge-of-things computing on smart healthcare systems. Comput. Electr. Eng. 72, 348–360 (2018)

    Article  Google Scholar 

  36. Mahmud, R., Ramamohannaro, K., Buyya, R.: Latency-aware application module management for fog computing environments. ACM Trans. Int. Tech. 19(1), 9 (2018)

    Google Scholar 

  37. Samanta, A., Tang, J.: Dyme: dynamic microservice scheduling in edge computing enabled IoT. IEEE Internet Things J. 7(7), 6164–6174 (2020)

    Article  Google Scholar 

  38. Raveendran, N., Zhang, H., Song, L., Wang, L. C., Hong, C. S., Han, Z.: Pricing and resource allocation optimization for IoT fog computing and NFV: An EPEC and matching based perspective. IEEE Trans. Mobile Comput. (2020)

  39. Zhou, G., Lu, J., Wan, C.-Y., Yarvis, M. D., Stankovic, J.A.: BodyQos: Adaptive and radio-agnostic QoS for body sensor networks. In: IEEE INFOCOM 2008—The 27th Conference on Computer Communications, pp. 565–573, Phoenix, AZ, USA (2008)

  40. Wu, G., Ren, J., Xia, F., Xu, Z.: An adaptive fault-tolerant communication scheme for body sensor networks. Sensors 10, 9560–9608 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Chauhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, N., Banka, H. & Agrawal, R. Adaptive bandwidth adjustment for resource constrained services in fog queueing system. Cluster Comput 24, 3837–3850 (2021). https://doi.org/10.1007/s10586-021-03378-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03378-1

Keywords