Skip to main content
Log in

A novel method of spectral clustering in attributed networks by constructing parameter-free affinity matrix

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The most basic and significant issue in complex network analysis is community detection, which is a branch of machine learning. Most current community detection approaches, only consider a network's topology structures, which lose the potential to use node attribute information. In attributed networks, both topological structure and node attributed are important features for community detection. In recent years, the spectral clustering algorithm has received much interest as one of the best performing algorithms in the subcategory of dimensionality reduction. This algorithm applies the eigenvalues of the affinity matrix to map data to low-dimensional space. In the present paper, a new version of the spectral cluster, named Attributed Spectral Clustering (ASC), is applied for attributed graphs that the identified communities have structural cohesiveness and attribute homogeneity. Since the performance of spectral clustering heavily depends on the goodness of the affinity matrix, the ASC algorithm will use the Topological and Attribute Random Walk Affinity Matrix (TARWAM) as a new affinity matrix to calculate the similarity between nodes. TARWAM utilizes the biased random walk to integrate network topology and attribute information. It can improve the similarity degree among the pairs of nodes in the same density region of the attributed network, without the need for parameter tuning. The proposed approach has been compared to other primary and new attributed graph clustering algorithms based on synthetic and real datasets. The experimental results show that the proposed approach is more effective and accurate compared to other state-of-the-art attributed graph clustering techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Palla, G., et al.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)

    Article  Google Scholar 

  2. Wang, X., et al.: Public discourse and social network echo chambers driven by socio-cognitive biases. Phys. Rev. X 10(4), 041042 (2020)

    Google Scholar 

  3. Liu, L., et al.: Homogeneity trend on social networks changes evolutionary advantage in competitive information diffusion. N. J. Phys. 22(1), 013019 (2020)

    Article  MathSciNet  Google Scholar 

  4. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  5. Cai, J., et al.: Enhancing network capacity by weakening community structure in scale-free network. Futur. Gener. Comput. Syst. 87, 765–771 (2018)

    Article  Google Scholar 

  6. Berahmand, K., Bouyer, A., Vasighi, M.: Community detection in complex networks by detecting and expanding core nodes through extended local similarity of nodes. IEEE Trans. Comput. Soc. Syst. 5(4), 1021–1033 (2018)

    Article  Google Scholar 

  7. Newman, M.E.: Spectral methods for community detection and graph partitioning. Phys. Rev. E 88(4), 042822 (2013)

    Article  Google Scholar 

  8. Zhou, L., et al.: An approach for overlapping and hierarchical community detection in social networks based on coalition formation game theory. Expert Syst. Appl. 42(24), 9634–9646 (2015)

    Article  Google Scholar 

  9. Günnemann, S., Boden, B., Seidl, T.: DB-CSC: a density-based approach for subspace clustering in graphs with feature vectors. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, New York (2011)

  10. Chunaev, P.: Community detection in node-attributed social networks: a survey. Comput. Sci. Rev. 37, 100286 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bothorel, C., et al.: Clustering attributed graphs: models, measures and methods. Netw. Sci. 3, 408–444 (2015)

    Article  Google Scholar 

  12. Zhou, Y., Cheng, H., Yu, J.X.: Clustering large attributed graphs: an efficient incremental approach. In: 2010 IEEE International Conference on Data Mining. IEEE (2010)

  13. White, S., Smyth, P.: A spectral clustering approach to finding communities in graphs. In: Proceedings of the 2005 SIAM international conference on data mining. SIAM (2005)

  14. Zhang, S., Wang, R.-S., Zhang, X.-S.: Identification of overlapping community structure in complex networks using fuzzy c-means clustering. Physica A 374(1), 483–490 (2007)

    Article  Google Scholar 

  15. Peng, R., Sun, H., Zanetti, L.: Partitioning well-clustered graphs: spectral clustering works! In: Conference on learning theory. PMLR (2015)

  16. Nascimento, M.C., De Carvalho, A.C.: Spectral methods for graph clustering–a survey. Eur. J. Oper. Res. 211(2), 221–231 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, Z., Jordan, M.I.: Multiway spectral clustering: a margin-based perspective. Stat. Sci. 23(3), 383–403 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zass, R., Shashua, A.: A unifying approach to hard and probabilistic clustering. In: Tenth IEEE International Conference on Computer Vision (ICCV'05) vol. 1. IEEE (2005)

  19. Xia, T., et al.: On defining affinity graph for spectral clustering through ranking on manifolds. Neurocomputing 72(13–15), 3203–3211 (2009)

    Article  Google Scholar 

  20. Chauhan, S., Girvan, M., Ott, E.: Spectral properties of networks with community structure. Phys. Rev. E 80(5), 056114 (2009)

    Article  Google Scholar 

  21. Arenas, A., Diaz-Guilera, A., Pérez-Vicente, C.J.: Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96(11), 114102 (2006)

    Article  Google Scholar 

  22. Cheng, X.-Q., Shen, H.-W.: Uncovering the community structure associated with the diffusion dynamics on networks. J. Stat. Mech. Theory Exp. 2010(04), P04024 (2010)

    Article  Google Scholar 

  23. Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  24. Shen, H.-W., Cheng, X.-Q., Fang, B.-X.: Covariance, correlation matrix, and the multiscale community structure of networks. Phys. Rev. E 82(1), 016114 (2010)

    Article  Google Scholar 

  25. Zhang, X., You, Q.: An improved spectral clustering algorithm based on random walk. Frontiers of Computer Science in China 5(3), 268 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ren, S., Zhang, S., Wu, T.: An improved spectral clustering community detection algorithm based on probability matrix. Discret. Dyn. Nat. Soc. 8, 1–6 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Hu, F., et al.: Community detection in complex networks using Node2vec with spectral clustering. Physica A 545, 123633 (2020)

    Article  Google Scholar 

  28. Wang, Z., et al., A community detection algorithm based on topology potential and spectral clustering. Sci. World J. (2014). https://doi.org/10.1155/2014/329325

  29. Mahmood, A., Small, M.: Subspace based network community detection using sparse linear coding. IEEE Trans. Knowl. Data Eng. 28(3), 801–812 (2015)

    Article  Google Scholar 

  30. Steinhaeuser, K., Chawla, N.V.: Identifying and evaluating community structure in complex networks. Pattern Recogn. Lett. 31(5), 413–421 (2010)

    Article  Google Scholar 

  31. Nawaz, W., et al.: Intra graph clustering using collaborative similarity measure. Distrib. Parallel Datab. 33(4), 583–603 (2015)

    Article  MathSciNet  Google Scholar 

  32. Zhou, H., et al.: A graph clustering method for community detection in complex networks. Physica A 469, 551–562 (2017)

    Article  Google Scholar 

  33. Agrawal, S., Patel, A.: SAG Cluster: An unsupervised graph clustering based on collaborative similarity for community detection in complex networks. Physica A 563, 125459 (2021)

    Article  Google Scholar 

  34. Ayoub, R.: Euler and the zeta function. Am. Math. Mon. 81(10), 1067–1086 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, W., Jiang, S., Jin, Q.: Overlap community detection using spectral algorithm based on node convergence degree. Futur. Gener. Comput. Syst. 79, 408–416 (2018)

    Article  Google Scholar 

  36. Alinezhad, E., et al.: Community detection in attributed networks considering both structural and attribute similarities: two mathematical programming approaches. Neural Comput. Appl. 32(8), 3203–3220 (2020)

    Article  Google Scholar 

  37. Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute similarities. Proc. VLDB Endow. 2(1), 718–729 (2009)

    Article  Google Scholar 

  38. Meng, F., et al.: Coupled node similarity learning for community detection in attributed networks. Entropy 20(6), 471 (2018)

    Article  Google Scholar 

  39. Jia, C., et al.: Node attribute-enhanced community detection in complex networks. Sci. Rep. 7(1), 1–15 (2017)

    Google Scholar 

  40. Pizzuti, C., Socievole, A.: A genetic algorithm for community detection in attributed graphs. In: International Conference on the Applications of Evolutionary Computation. Springer (2018)

  41. Berahmand, K., et al., A new attributed graph clustering by using label propagation in complex networks. J. King Saud Univ. Comput. Inf. Sci. (2020). https://doi.org/10.1016/j.jksuci.2020.08.013

  42. Cheng, H., et al.: Clustering large attributed information networks: an efficient incremental computing approach. Data Min. Knowl. Disc. 25(3), 450–477 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Huang, X., Cheng, H., Yu, J.X.: Dense community detection in multi-valued attributed networks. Inf. Sci. 314, 77–99 (2015)

    Article  MATH  Google Scholar 

  44. Gao, H., Huang, H.: Deep attributed network embedding. In: Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI) (2018)

  45. Cao, S., Lu, W., Xu, Q.: Grarep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management (2015)

  46. Tang, J., et al.: Line: Large-scale information network embedding. In Proceedings of the 24th International Conference on World Wide Web (2015)

  47. Le, T.M., Lauw, H.W.: Probabilistic latent document network embedding. In: 2014 IEEE International Conference on Data Mining. IEEE (2014)

  48. Zhang, Z., et al.: ANRL: attributed network representation learning via deep neural networks. In: IJCAI (2018)

  49. Wang, C., et al.: Attributed graph clustering: a deep attentional embedding approach. (2019). http://arxiv.org/abs/1906.06532

  50. Zhang, X., et al.: Attributed graph clustering via adaptive graph convolution. (2019). http://arxiv.org/abs/1906.01210

  51. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. (2016). http://arxiv.org/abs/1609.02907

  52. Henaff, M., Bruna, J., LeCun, Y.: Deep convolutional networks on graph-structured data. (2015). http://arxiv.org/abs/1506.05163.

  53. Wang, C., et al.: Mgae: marginalized graph autoencoder for graph clustering. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. (2017)

  54. Sun, H., et al.: Network embedding for community detection in attributed networks. ACM Trans. Knowl. Discov. Data (TKDD) 14(3), 1–25 (2020)

    Article  Google Scholar 

  55. Luo, M., Yan, H.: Adaptive attributed network embedding for community detection. In: Chinese Conference on Pattern Recognition and Computer Vision (PRCV). Springer (2020)

  56. Zhou, Z., Amini, A.A.: Analysis of spectral clustering algorithms for community detection: the general bipartite setting. J. Mach. Learn. Res. 20(47), 1–47 (2019)

    MathSciNet  MATH  Google Scholar 

  57. Gulikers, L., Lelarge, M., Massoulié, L.: A spectral method for community detection in moderately sparse degree-corrected stochastic block models. Adv. Appl. Probab. 49, 686–721 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  58. Li, Y., et al.: Local spectral clustering for overlapping community detection. ACM Trans. Knowl. Discov. Data (TKDD) 12(2), 1–27 (2018)

    Article  Google Scholar 

  59. Liu, F., et al.: Global spectral clustering in dynamic networks. Proc. Natl. Acad. Sci. 115(5), 927–932 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  60. Ye, F., et al.: Homophily preserving community detection. IEEE Trans. Neural Netw. Learn. Syst. 31(8), 2903–2915 (2019)

    Article  MathSciNet  Google Scholar 

  61. Nasiri, E., Berahmand, K., Li, Y.: A new link prediction in multiplex networks using topologically biased random walks. J. Chaos Solit. Fract. 151, 111230 (2021)

    Article  Google Scholar 

  62. Forouzandeh, S., Rostami, M., Berahmand, K.: Presentation a trust walker for rating prediction in recommender system with biased random walk: effects of H-index centrality, similarity in items and friends. Eng. Appl. Artif. Intell. 104, 104325 (2021)

    Article  Google Scholar 

  63. Berahmand, K., et al., A preference random walk algorithm for link prediction through mutual influence nodes in complex networks. J. King Saud Univ. Comput. Inf. Sci. (2021). https://doi.org/10.1016/j.jksuci.2021.05.006

  64. Liu, W., Lü, L.: Link prediction based on local random walk. EPL (Europhysics Letters) 89(5), 58007 (2010)

    Article  Google Scholar 

  65. Kuncheva, L.I., Hadjitodorov, S.T.: Using diversity in cluster ensembles. In: 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583). IEEE (2004)

  66. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  67. Chen, M., Kuzmin, K., Szymanski, B.K.: Community detection via maximization of modularity and its variants. IEEE Trans. Comput. Soc. Syst. 1(1), 46–65 (2014)

    Article  Google Scholar 

  68. Pizzuti, C., Socievole, A.: Multiobjective optimization and local merge for clustering attributed graphs. IEEE Trans. Cybernet. 50(12), 4997–5009 (2019)

    Article  Google Scholar 

  69. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rojiar Pir Mohammadiani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berahmand, K., Mohammadi, M., Faroughi, A. et al. A novel method of spectral clustering in attributed networks by constructing parameter-free affinity matrix. Cluster Comput 25, 869–888 (2022). https://doi.org/10.1007/s10586-021-03430-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03430-0

Keywords

Navigation