Skip to main content
Log in

A Multi-objective variable neighborhood search for the maximal covering location problem with customer preferences

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

This paper considers a variant of maximal covering location problem with customer preferences and two objectives involved: maximization of the weighted sum of the covered demand and minimization of the number of uncovered customers. The problem has important applications in service network design, such as telecommunication and computer networks, service placement problem, etc. This paper proposes a multi-objective variable neighborhood search (MO-VNS) as a metaheuristic approach for the considered problem. Following the concepts of basic, reduced, and general VNS in single-objective optimization, three MO-VNS variants are proposed: MO-BVNS, MO-RVNS, and MO-GVNS. The proposed MO-VNS implementations were compared with each other and with the existing multi-objective evolutionary algorithms (MOEAs). The MO-VNS concept showed to be superior over MOEA, as all MO-VNS variants outperform MOEAs in the sense of solution quality, especially on the largest size test instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Church, R., ReVelle, C.: The maximal covering location problem. Papers Reg. Sci. Asso. 32(1), 101–118 (1974)

    Article  Google Scholar 

  2. Berman, O., Drezner, Z., Krass, D.: Generalized coverage: new developments in covering location models. Comput. Operat. Res. 37(10), 1675–1687 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Farahani, R.Z., Asgari, N., Heidari, N., Hosseininia, M., Goh, M.: Covering problems in facility location: a review. Comput. Ind. Eng. 62(1), 368–407 (2012)

    Article  Google Scholar 

  4. Mrkela, L., Stanimirović, Z.: A bi-objective maximal covering location problem: a service network design application. In: 2020 International Conference on Innovations in Intelligent Systems and Applications (INISTA), pp. 1–7. IEEE (2020)

  5. Hadka, D.: Moea framework: A free and open source java framework for multiobjective optimization (2019). http://moeaframework.org

  6. Church, R., Current, J., Storbeck, J.: A bicriterion maximal covering location formulation which considers the satisfaction of uncovered demand. Decis. Sci. 22(1), 38–52 (1991)

    Article  Google Scholar 

  7. Badri, M.A., Mortagy, A.K., Alsayed, C.A.: A multi-objective model for locating fire stations. Eur. J. Oper. Res. 110(2), 243–260 (1998)

    Article  MATH  Google Scholar 

  8. Araz, C., Selim, H., Ozkarahan, I.: A fuzzy multi-objective covering-based vehicle location model for emergency services. Comput. Oper. Res. 34(3), 705–726 (2007)

    Article  MATH  Google Scholar 

  9. Karasakal, E., Silav, A.: A multi-objective genetic algorithm for a bi-objective facility location problem with partial coverage. TOP 24(1), 206–232 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chanta, S., Mayorga, M.E., McLay, L.A.: Improving emergency service in rural areas: a bi-objective covering location model for ems systems. Ann. Oper. Res. 221(1), 133–159 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Spieker, H., Hagg, A., Gaier, A., Meilinger, S., Asteroth, A.: Multi-stage evolution of single-and multi-objective mclp. Soft. Comput. 21(17), 4859–4872 (2017)

    Article  Google Scholar 

  12. Díaz, J.A., Luna, D.E., Camacho-Vallejo, J.F., Casas-Ramírez, M.S.: GRASP and hybrid GRASP-tabu heuristics to solve a maximal covering location problem with customer preference ordering. Expert Syst. Appl. 82, 67–76 (2017)

    Article  Google Scholar 

  13. Küçükaydın, H., Aras, N.: Gradual covering location problem with multi-type facilities considering customer preferences. Comput. Ind. Eng. 147, 106577 (2020). https://doi.org/10.1016/j.cie.2020.106577

    Article  Google Scholar 

  14. Lee, J.M., Lee, Y.H.: Facility location and scale decision problem with customer preference. Comput. Ind. Eng. 63(1), 184–191 (2012)

    Article  Google Scholar 

  15. Von Lücken, C., Barán, B., Brizuela, C.: A survey on multi-objective evolutionary algorithms for many-objective problems. Comput. Optim. Appl. 58(3), 707–756 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)

    Article  Google Scholar 

  17. Atta, S., Mahapatra, P.R.S., Mukhopadhyay, A.: Multi-objective uncapacitated facility location problem with customers’ preferences: pareto-based and weighted sum GA-based approaches. Soft. Comput. 23(23), 12347–12362 (2019)

    Article  Google Scholar 

  18. Doerner, K.F., Gutjahr, W.J., Nolz, P.C.: Multi-criteria location planning for public facilities in tsunami-prone coastal areas. OR Spectrum 31(3), 651–678 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bhattacharya, R., Bandyopadhyay, S.: Solving conflicting bi-objective facility location problem by NSGA-II evolutionary algorithm. Int. J. Adv. Manuf. Technol. 51(1–4), 397–414 (2010)

    Article  Google Scholar 

  20. Villegas, J.G., Palacios, F., Medaglia, A.L.: Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example. Ann. Oper. Res. 147(1), 109–141 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Medaglia, A.L., Villegas, J.G., Rodríguez-Coca, D.M.: Hybrid biobjective evolutionary algorithms for the design of a hospital waste management network. J. Heuristics 15(2), 153 (2009)

    Article  MATH  Google Scholar 

  22. Farahani, R.Z., SteadieSeifi, M., Asgari, N.: Multiple criteria facility location problems: a survey. Appl. Math. Model. 34(7), 1689–1709 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  24. Zitzler, E., Laumanns, M., Thiele, L.: SPEA 2: improving the strength pareto evolutionary algorithm, TIK report 103. Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Zurich, Switzerland (2001). https://doi.org/10.3929/ethz-a-004284029

  25. Deb, K., Mohan, M., Mishra, S.: Towards a quick computation of well-spread pareto-optimal solutions. In: Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, pp. 222–236. Springer (2003)

  26. Deb, K., Mohan, M., Mishra, S.: Evaluating the \(\varepsilon \)-domination based multi-objective evolutionary algorithm for a quick computation of pareto-optimal solutions. Evol. Comput. 13(4), 501–525 (2005)

    Article  Google Scholar 

  27. Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applications. Eur. J. Oper. Res. 130(3), 449–467 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Ind. Eng. 24(11), 1097–1100 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Megiddo, N., Zemel, E., Hakimi, S.L.: The maximum coverage location problem. SIAM J. Algeb. Discrete Methods 4(2), 253–261 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Máximo, V.R., Nascimento, M.C., Carvalho, A.C.: Intelligent-guided adaptive search for the maximum covering location problem. Comput. Ind. Eng. 78, 129–137 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Foundation, O.: Open street map (2021). https://www.openstreetmap.org/

  32. Hansen, P., Mladenović, N., Todosijević, R., Hanafi, S.: Variable neighborhood search: basics and variants. EURO J. Comput. Optim. 5(3), 423–454 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Geiger, M.J.: Randomised variable neighbourhood search for multi objective optimisation. In: Proceedings of EU/ME Workshop: Design and Evaluation of Advanced Hybrid Meta-heuristics, pp. 34–42 (2004)

  34. Arroyo, J.E.C., dos Santos Ottoni, R., de Paiva Oliveira, A.: Multi-objective variable neighborhood search algorithms for a single machine scheduling problem with distinct due windows. Electron. Notes Theor. Comput. Sci. 281, 5–19 (2011)

    Article  Google Scholar 

  35. Liang, Y.C., Chen, H., Tien, C.Y.: Variable neighborhood search for multi-objective parallel machine scheduling problems. In: Proceedings of the 8th International Conference on Information and Management Sciences, pp. 519–522 (2009)

  36. Liang, Y.C., Lo, M.H.: Multi-objective redundancy allocation optimization using a variable neighborhood search algorithm. J. Heuristics 16(3), 511–535 (2010)

    Article  MATH  Google Scholar 

  37. Duarte, A., Pantrigo, J.J., Pardo, E.G., Mladenovic, N.: Multi-objective variable neighborhood search: an application to combinatorial optimization problems. J. Global Optim. 63(3), 515–536 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Eskandarpour, M., Zegordi, S.H., Nikbakhsh, E.: A parallel variable neighborhood search for the multi-objective sustainable post-sales network design problem. Int. J. Prod. Econ. 145(1), 117–131 (2013)

    Article  MATH  Google Scholar 

  39. Ripon, K.S.N., Glette, K., Khan, K.N., Hovin, M., Torresen, J.: Adaptive variable neighborhood search for solving multi-objective facility layout problems with unequal area facilities. Swarm Evol. Comput. 8, 1–12 (2013)

    Article  Google Scholar 

  40. Abedzadeh, M., Mazinani, M., Moradinasab, N., Roghanian, E.: Parallel variable neighborhood search for solving fuzzy multi-objective dynamic facility layout problem. Int. J. Adv. Manuf. Technol. 65(1–4), 197–211 (2013)

    Article  Google Scholar 

  41. Lust, T., Tuyttens, D.: Variable and large neighborhood search to solve the multiobjective set covering problem. J. Heuristics 20(2), 165–188 (2014)

    Article  MATH  Google Scholar 

  42. Colombo, F., Cordone, R., Lulli, G.: A variable neighborhood search algorithm for the multimode set covering problem. J. Global Optim. 63(3), 461–480 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Colombo, F., Cordone, R., Lulli, G.: The multimode covering location problem. Comput. Oper. Res. 67, 25–33 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Davari, S., Zarandi, M.H.F., Turksen, I.B.: A greedy variable neighborhood search heuristic for the maximal covering location problem with fuzzy coverage radii. Knowl.-Based Syst. 41, 68–76 (2013)

    Article  Google Scholar 

  45. Mišković, S.: A VNS-LP algorithm for the robust dynamic maximal covering location problem. OR Spectrum 39(4), 1011–1033 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Schmid, V., Doerner, K.F.: Ambulance location and relocation problems with time-dependent travel times. Eur. J. Oper. Res. 207(3), 1293–1303 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Cordeau, J.F., Furini, F., Ljubić, I.: Benders decomposition for very large scale partial set covering and maximal covering location problems. Eur. J. Oper. Res. 275(3), 882–896 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Cánovas, L., García, S., Labbé, M., Marín, A.: A strengthened formulation for the simple plant location problem with order. Oper. Res. Lett. 35(2), 141–150 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Liefooghe, A., Derbel, B.: A correlation analysis of set quality indicator values in multiobjective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 581–588 (2016)

  50. Nebro, A.J., Luna, F., Alba, E., Dorronsoro, B., Durillo, J.J., Beham, A.: Abyss: Adapting scatter search to multiobjective optimization. IEEE Trans. Evol. Comput. 12(4), 439–457 (2008)

    Article  Google Scholar 

  51. Brockhoff, D., Wagner, T., Trautmann, H.: On the properties of the R2 indicator. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, pp. 465–472 (2012)

  52. Riquelme, N., Von Lücken, C., Baran, B.: Performance metrics in multi-objective optimization. In: 2015 Latin American Computing Conference (CLEI), pp. 1–11. IEEE (2015)

  53. Ravber, M., Mernik, M., Črepinšek, M.: The impact of quality indicators on the rating of multi-objective evolutionary algorithms. Appl. Soft Comput. 55, 265–275 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors state that the research conducted in this paper was partially supported by the funds of Serbian Ministry of Education, Science and Technological Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lazar Mrkela.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mrkela, L., Stanimirović, Z. A Multi-objective variable neighborhood search for the maximal covering location problem with customer preferences. Cluster Comput 25, 1677–1693 (2022). https://doi.org/10.1007/s10586-021-03524-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03524-9

Keywords