Skip to main content

Advertisement

Log in

Dynamic QoS/QoE-aware reliable service composition framework for edge intelligence

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Edge intelligence has become popular recently since it brings smartness and copes with some shortcomings of conventional technologies such as cloud computing, Internet of Things (IoT), and centralized AI adoptions. However, although utilizing edge intelligence contributes to providing smart systems such as automated driving systems, smart cities, and connected healthcare systems, it is not free from limitations. There exist various challenges in integrating AI and edge computing, one of which is addressed in this paper. Our main focus is to handle the adoption of AI methods on resource-constrained edge devices. In this regard, we introduce the concept of Edge devices as a Service (EdaaS) and propose a quality of service (QoS) and quality of experience (QoE)-aware dynamic and reliable framework for AI subtasks composition. The proposed framework is evaluated utilizing three well-known meta-heuristics in terms of various metrics for a connected healthcare application scenario. The experimental results confirm the applicability of the proposed framework. Moreover, the results reveal that black widow optimization (BWO) can handle the issue more efficiently compared to particle swarm optimization (PSO) and simulated annealing (SA). The overall efficiency of BWO over PSO is 95%, and BWO outperforms SA with 100% efficiency. It means that BWO prevails SA and PSO in all and 95% of the experiments, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Balasubramanian, V., Wang, M., Reisslein, M., Xu, C.: Edge-Boost: enhancing multimedia delivery with mobile edge caching in 5G-D2D networks. In: IEEE International Conference on Multimedia and Expo (ICME) 2019, pp. 1684–1689 (2019)

  2. Lu, H., He, X., Du, M., Ruan, X., Sun, Y., Wang, K.: Edge QoE: computation offloading with deep reinforcement learning for Internet of Things. IEEE Internet Things J. 7(10), 9255–9265 (2020)

    Article  Google Scholar 

  3. Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar, S., Zomaya, A.Y.: Edge intelligence: the confluence of edge computing and artificial intelligence. IEEE Internet Things J. 7(8), 7457–7469 (2020)

    Article  Google Scholar 

  4. Hayyolalam, V., Aloqaily, M., Ozkasap, O., Guizani, M.: Edge intelligence for empowering IoT-based healthcare systems. IEEE Wirel. Commun. Mag. (2021). https://doi.org/10.48550/arXiv.2103.12144

    Article  Google Scholar 

  5. Hayyolalam, V., Aloqaily, M., Özkasap, Ö., Guizani, M.: Edge-assisted solutions for IoT-based connected healthcare systems: a literature review. IEEE Internet Things J. 3, 1 (2021). https://doi.org/10.1109/JIOT.2021.3135200

    Article  Google Scholar 

  6. Rahman, M.S., Khalil, I., Atiquzzaman, M., Yi, X.: Towards privacy preserving AI based composition framework in edge networks using fully homomorphic encryption. Eng. Appl. Artif. Intell. 94, 103737 (2020)

    Article  Google Scholar 

  7. Zhao, J., Tiplea, T., Mortier, R., Crowcroft, J., Wang, L.: Data analytics service composition and deployment on edge devices. In: Proceedings of Workshop on Big Data Analytics and Machine Learning for Data Communication Networks, 2018, pp. 27–32 (2018)

  8. Balasubramanian, V., Otoum, S., Aloqaily, M., Al Ridhawi, I., Jararweh, Y.: Low-latency vehicular edge: a vehicular infrastructure model for 5G. Simul. Model. Pract. Theory 98, 101968 (2020)

    Article  Google Scholar 

  9. Wang, X., Han, Y., Leung, V.C., Niyato, D., Yan, X., Chen, X.: Convergence of edge computing and deep learning: a comprehensive survey. IEEE Commun. Surv. Tutor. 22(2), 869–904 (2020)

    Article  Google Scholar 

  10. Hayyolalam, V., Kazem, A.A.P.: A systematic literature review on QoS-aware service composition and selection in cloud environment. J. Netw. Comput. Appl. 110, 52–74 (2018)

    Article  Google Scholar 

  11. Hamzei, M., Navimipour, N.J.: Toward efficient service composition techniques in the Internet of Things. IEEE Internet Things J. 5(5), 3774–3787 (2018)

    Article  Google Scholar 

  12. Al Ridhawi, I., Aloqaily, M., Boukerche, A., Jaraweh, Y.: A Blockchain-based decentralized composition solution for IoT services. In: ICC 2020—IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2020)

  13. Al Ridhawi, I., Aloqaily, M., Kotb, Y., Al Ridhawi, Y., Jararweh, Y.: A collaborative mobile edge computing and user solution for service composition in 5G systems. Trans. Emerg. Telecommun. Technol. 29(1), e3446 (2018)

    Article  Google Scholar 

  14. Huang, J., Liang, J., Ali, S.: A simulation-based optimization approach for reliability-aware service composition in edge computing. IEEE Access 8, 50 355-50 366 (2020)

    Article  Google Scholar 

  15. Gao, H., Huang, W., Duan, Y.: The cloud-edge-based dynamic reconfiguration to service workflow for mobile ecommerce environments: a QoS prediction perspective. ACM Trans. Internet Technol. 21(1), 1–23 (2021)

    Article  Google Scholar 

  16. Wang, R., Lu, J.: QoS-aware service discovery and selection management for cloud-edge computing using a hybrid meta-heuristic algorithm in IoT. Wirel. Pers. Commun. (2021). https://doi.org/10.1007/s11277-021-09052-4

    Article  Google Scholar 

  17. Fekih, H., Mtibaa, S., Bouamama, S.: The dynamic reconfiguration approach for fault-tolerance web service composition based on multi-level VCSOP. Procedia Comput. Sci. 159, 1527–1536 (2019)

    Article  Google Scholar 

  18. Elsayed, D., Nasr, E., El Ghazali, A., Gheith, M.: A self-healing model for QoS-aware web service composition. Int. Arab J. Inf. Technol. 17(6), 839–846 (2020)

    Google Scholar 

  19. Laleh, T., Paquet, J., Mokhov, S., Yan, Y.: Constraint verification failure recovery in web service composition. Future Gener. Comput. Syst. 89, 387–401 (2018)

    Article  Google Scholar 

  20. Wang, L., He, Q., Gao, D., Wan, J., Zhang, Y.: Temporal-perturbation aware reliability sensitivity measurement for adaptive cloud service selection. IEEE Trans. Serv. Comput. 3, 1 (2020). https://doi.org/10.1109/TSC.2020.3046360

    Article  Google Scholar 

  21. Peng, Q., Xia, Y., Zhou, M., Luo, X., Wang, S., Wang, Y., Wu, C., Pang, S., Lin, M.: Reliability-aware and deadline-constrained mobile service composition over opportunistic networks. IEEE Trans. Autom. Sci. Eng. 18(3), 1012–1025 (2020)

    Article  Google Scholar 

  22. Hosseini Bidi, A., Movahedi, Z., Movahedi, Z.: A fog-based fault-tolerant and QoE-aware service composition in smart cities. Trans. Emerg. Telecommun. Technol. 32(11), e4326 (2021)

    Google Scholar 

  23. Hayyolalam, V., Pourghebleh, B., Pourhaji Kazem, A.: Trust management of services (TMoS): investigating the current mechanisms. Trans. Emerg. Telecommun. Technol. 31(10), e4063 (2020)

    Google Scholar 

  24. Pourghebleh, B., Hayyolalam, V., Anvigh, A.A.: Service discovery in the Internet of Things: review of current trends and research challenges. Wirel. Netw. 26(7), 5371–5391 (2020)

    Article  Google Scholar 

  25. Hayyolalam, V., Pourghebleh, B., Chehrehzad, M.R., Pourhaji Kazem, A.A.: Single-objective service composition methods in cloud manufacturing systems: recent techniques, classification, and future trends. Concurr. Comput. Pract. Exp. 34(5), e6698 (2021)

    Google Scholar 

  26. Hayyolalam, V., Pourhaji Kazem, A.A.: QoS-aware optimization of cloud service composition using symbiotic organisms search algorithm. J. Intell. Proced. Electr. Technol. 8(32), 29–38 (2017)

    Google Scholar 

  27. Hayyolalam, V., Kazem, A.A.P.: Review of service composition approaches in cloud environment. In: First International Comprehensive Competition Conference on Engineering Sciences in Iran (2018)

  28. Eyhab Al-Masri: QWS Dataset (2007). https://qwsdata.github.io/qws2.html

  29. Lalanne, F., Cavalli, A., Maag, S.: Quality of experience as a selection criterion for web services. In: Eighth International Conference on Signal Image Technology and Internet Based Systems, pp. 519–526. IEEE (2012)

  30. Aarts, E.H., Korst, J.H., van Laarhoven, P.J.: Simulated Annealing. Princeton University Press, Princeton (2018)

    MATH  Google Scholar 

  31. Abdel-Basset, M., Ding, W., El-Shahat, D.: A hybrid Harris Hawks optimization algorithm with simulated annealing for feature selection. Artif. Intell. Rev. 54(1), 593–637 (2021)

    Article  Google Scholar 

  32. Khanam, R., Kumar, R.R., Kumar, C.: QoS based cloud service composition with optimal set of services using PSO. In: 4th International Conference on Recent Advances in Information Technology (RAIT), pp. 1–6. IEEE (2018)

  33. Hayyolalam, V., Kazem, A.A.P.: Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems. Eng. Appl. Artif. Intell. 87, 103249 (2020)

    Article  Google Scholar 

  34. Asghari, P., Rahmani, A.M., Javadi, H.H.S.: Privacy-aware cloud service composition based on QoS optimization in Internet of Things. J. Ambient Intell. Humaniz. Comput. (2020). https://doi.org/10.1007/s12652-020-01723-7

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Faculty of Technological Innovation, Zayed University (ZU), under Grant Number RIF-20130.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safa Otoum.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayyolalam, V., Otoum, S. & Özkasap, Ö. Dynamic QoS/QoE-aware reliable service composition framework for edge intelligence. Cluster Comput 25, 1695–1713 (2022). https://doi.org/10.1007/s10586-022-03572-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03572-9

Keywords