Skip to main content

Advertisement

Log in

Clustering of mobile IoT nodes with support for scheduling of time-sensitive applications in fog and cloud layers

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Fog computing is widely used as a mediation layer to fill the gap between Internet of Things (IoT) nodes and cloud datacenters. The fog layer can provide higher availability and better response time to IoT applications with its distributed and near-to-user nature. This paper proposes an end-to-end architecture to integrate IoT, fog, and cloud layers with higher availability, better resource utilization, and response time for time-sensitive applications. Two major flows in the proposed architecture are a) the clustering and b) the scheduling. The clustering flow involves performing dynamic and fully decentralized clustering of IoT nodes to increase the manageability of mobile IoT nodes, decrease the energy consumption in resource-constrained nodes, and improve network traffic throughput. The novel multiobjective decentralized clustering algorithm used in the clustering flow is based on fuzzy logic to allow fast execution of the algorithm on IoT nodes with limited computing power. The scheduling flow is in charge of resource scheduling in fog and cloud layers to provide time-sensitive IoT applications with an acceptable completion time by the firefly algorithm. The simulation results prove that two major flows of the proposed architecture outperform energy consumption, network throughput, success rate, and performance of IoT applications with time constraints compared to the two recent methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Vehicular Ad Hoc Network.

References

  1. Basu, S., Karuppiah, M., Selvakumar, K.: An intelligent/cognitive model of task scheduling for IoT applications in cloud computing environment. Futur. Gener. Comput. Syst. 88, 254–261 (2018)

    Article  Google Scholar 

  2. Memari, P., Mohammadi, S., Jolai, F., Tavakkoli-Moghaddam, R.: A latency-aware task scheduling algorithm for allocating virtual machines in a cost-effective and time-sensitive fog-cloud architecture. J. Supercomput. 78, 1–30 (2021)

    Google Scholar 

  3. Ren, Z., Lu, T., Wang, X., Guo, W., Liu, G., Chang, S.: Resource scheduling for delay-sensitive application in three-layer fog-to-cloud architecture. Peer-to-Peer Networking and Applications 13(5), 1474–1485 (2020)

    Article  Google Scholar 

  4. Sharma, S., Saini, H.: A novel four-tier architecture for delay aware scheduling and load balancing in fog environment. Sustainable computing: Informatics and Systems 24, 100355 (2019)

    Google Scholar 

  5. Davami, F., Adabi, S., Rezaee, A., Rahmani, A.: fog-based architecture for scheduling multiple workflows with high availability requirement. Computing 104, 1–40 (2021)

    Google Scholar 

  6. Abdelmoneem R. M., Benslimane A., Shaaban E., Abdelhamid S., Ghoneim S. "A cloud-fog based architecture for iot applications dedicated to healthcare". In ICC 2019–2019 IEEE International Conference on Communications (ICC), (2019), (pp. 1–6). IEEE.

  7. Jin J., Luo J., Song A., Dong F., Xiong R. "Bar: An efficient data locality driven task scheduling algorithm for cloud computing". In 2011 11th IEEE/ACM International Symposium on Cluster, cloud and Grid computing, (2011, May), (pp. 295–304). IEEE.

  8. Abdelmoneem, R.M., Benslimane, A., Shaaban, E.: Mobility-aware task scheduling in cloud-fog IoT-based healthcare architectures. Comput. Netw. 179, 107348 (2020)

    Article  Google Scholar 

  9. Abdolkarimi, M., Adabi, S., Sharifi, A.: A new multiobjective distributed fuzzy clustering algorithm for wireless sensor networks with mobile gateways. AEU-Internat. J. Electron. Commun. 89, 92–104 (2018)

    Article  Google Scholar 

  10. Asensio, A., Masip-Bruin, X., Durán, R.J., de Miguel, I., Ren, G., Daijavad, S., Jukan, A.: Designing an efficient clustering strategy for combined fog-to-cloud scenarios. Futur. Gener. Comput. Syst. 109, 392–406 (2020)

    Article  Google Scholar 

  11. Hao, Y., Cao, J., Wang, Q., Du, J.: Energy-aware scheduling in edge computing with a clustering method. Futur. Gener. Comput. Syst. 117, 259–272 (2021)

    Article  Google Scholar 

  12. Seema, B., Yao, N., Carie, A., Shah, S.B.H.: Efficient data transfer in clustered IoT network with cooperative member nodes. Multimedia Tools and Applications 79(45), 34241–34251 (2020)

    Article  Google Scholar 

  13. Kandali, K., Bennis, L., Bennis, H.: A New Hybrid Routing Protocol Using a Modified K-Means Clustering Algorithm and Continuous Hopfield Network for VANET. IEEE Access 9, 47169–47183 (2021)

    Article  Google Scholar 

  14. Moasses H., Ghaderzadeh A., Khamforoosh K. "HetEng: An Improved Distributed Energy Efficient Clustering Scheme for Heterogeneous IoT Networks". (2021), arXiv preprint arXiv:2106.15718

  15. Muthanna, M.S.A., Wang, P., Wei, M., Rafiq, A., Josbert, N.N.: Clustering optimization of LoRa networks for perturbed ultra-dense IoT networks. Information 12(2), 76 (2021)

    Article  Google Scholar 

  16. Sharifi, S.A., Babamir, S.M.: The clustering algorithm for efficient energy management in mobile ad-hoc networks. Comput. Netw. 166, 106983 (2020)

    Article  Google Scholar 

  17. Abbas, F., Fan, P.: Clustering-based reliable low-latency routing scheme using ACO method for vehicular networks. Vehicular Communications 12, 66–74 (2018)

    Article  Google Scholar 

  18. Xhafa, F., Aly, A., Juan, A.: Allocation of applications to fog resources via semantic clustering techniques: With scenarios from intelligent transportation systems. Computing 103(3), 361–378 (2021)

    Article  MathSciNet  Google Scholar 

  19. He, J., Wei, J., Chen, K., Tang, Z., Zhou, Y., Zhang, Y.: Multitier fog computing with large-scale iot data analytics for smart cities. IEEE Internet Things J. 5(2), 677–686 (2017)

    Article  Google Scholar 

  20. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  21. Hasan, R., Hossain, M., Khan, R.: Aura: An incentive-driven ad-hoc IoT cloud framework for proximal mobile computation offloading. Futur. Gener. Comput. Syst. 86, 821–835 (2018)

    Article  Google Scholar 

  22. Orsini G., Bade D., Lamersdorf W. " computing at the mobile edge: Designing elastic android applications for computation offloading". In 2015 8th IFIP wireless and mobile networking conference (WMNC), (2015, October), pp. 112–119, IEEE.

  23. Habak K., Ammar M., Harras K. A., Zegura E. "Femto clouds: Leveraging mobile devices to provide cloud service at the edge". In 2015 IEEE 8th international conference on cloud computing, (2015, June), pp. 9–16, IEEE.

  24. Hekmati, A., Teymoori, P., Todd, T.D., Zhao, D., Karakostas, G.: Optimal multi-part mobile computation offloading with hard deadline constraints. Comput. Commun. 160, 614–622 (2020)

    Article  Google Scholar 

  25. Roy B., Mondal A. K., Roy C. K., Schneider K. A., Wazed K. "Towards a reference architecture for cloud-based plant genotyping and phenotyping analysis frameworks". In 2017 IEEE international conference on software architecture (ICSA), (2017, April), pp. 41–50, IEEE.

  26. Kayabay K., Gökalp M. O., Eren P. E., Koçyiğit A. " [WiP] A Workflow and cloud Based Service-Oriented Architecture for Distributed Manufacturing in Industry 4.0 Context". In 2018 IEEE 11th Conference on Service-Oriented computing and Applications (SOCA), (2018, November), pp. 88–92, IEEE.

  27. Adhikari, M., Gianey, H.: Energy efficient offloading strategy in fog-cloud environment for IoT applications. Internet of Things 6, 100053 (2019)

    Article  Google Scholar 

  28. Tan H., Han Z., Li X. Y., Lau F. C. "Online job dispatching and scheduling in edge-clouds". In IEEE INFOCOM 2017-IEEE Conference on Computer Communications, (2017, May), pp. 1–9, IEEE.

  29. Mattsson M., Grahn H., Mårtensson F. "Software architecture evaluation methods for performance, maintainability, testability, and portability". In Second International Conference on the Quality of Software Architectures, (2006).

  30. De Maio, V., Kimovski, D.: Multiobjective scheduling of extreme data scientific workflows in fog. Futur. Gener. Comput. Syst. 106, 171–184 (2020)

    Article  Google Scholar 

  31. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys (CSUR) 35(3), 268–308 (2003)

    Article  Google Scholar 

  32. Wang, Y., Guo, Y., Guo, Z., Baker, T., Liu, W.: CLOSURE: A cloud scientific workflow scheduling algorithm based on attack–defense game model. Futur. Gener. Comput. Syst. 111, 460–474 (2020)

    Article  Google Scholar 

  33. Faragardi, H.R., Sedghpour, M.R.S., Fazliahmadi, S., Fahringer, T., Rasouli, N.: GRP-HEFT: A budget-constrained resource provisioning scheme for workflow scheduling in IaaS clouds. IEEE Trans. Parallel Distrib. Syst. 31(6), 1239–1254 (2019)

    Article  Google Scholar 

  34. Ismayilov, G., Topcuoglu, H.R.: Neural network based multiobjective evolutionary algorithm for dynamic workflow scheduling in cloud computing. Futur. Gener. Comput. Syst. 102, 307–322 (2020)

    Article  Google Scholar 

  35. Aburukba, R.O., AliKarrar, M., Landolsi, T., El-Fakih, K.: Scheduling Internet of Things requests to minimize latency in hybrid fog–cloud computing. Futur. Gener. Comput. Syst. 111, 539–551 (2020)

    Article  Google Scholar 

  36. https://cse.iitkgp.ac.in/~dsamanta/courses/archive/sca/Archives/Chapter%205%20Defuzzification%20Methods.pdf

  37. Baltrunas D., Elmokashfi A., Kvalbein A., Alay, Ö. "Investigating packet loss in mobile broadband networks under mobility". In 2016 IFIP Networking Conference (IFIP Networking) and Workshops, (2016), pp. 225–233, IEEE.

  38. Huang, H., Huang, C., Ma, D.: The cluster based compressive data collection for wireless sensor networks with a mobile sink. AEU-International J Electron. Commun. 108, 206–214 (2019)

    Article  Google Scholar 

  39. Krishnan, M., Yun, S., Jung, Y.M.: Improved clustering with firefly-optimization-based mobile data collector for wireless sensor networks. AEU-International J Electron. Commun. 97, 242–251 (2018)

    Article  Google Scholar 

  40. Shrivastava, A., Bansod, P., Gupta, K., Merchant, S.N.: An improved multicast based energy efficient opportunistic data scheduling algorithm for VANET. AEU-International J Electron. Commun. 83, 407–415 (2018)

    Article  Google Scholar 

  41. Pan, S., Chen, Y.: A bandwidth allocation and energy-optimal transmission rate scheduling scheme in multi-services wireless networks. AEU-International J Electron. Commun. 95, 97–106 (2018)

    Article  Google Scholar 

  42. Davami F., Adabi S., Rezaee A., Rahmani A.M. "Distributed scheduling method for multiple workflows with parallelism prediction and DAG prioritizing for time constrained cloud applications". Computer Networks, (2021) 108560

  43. Doostali S., Babamir S.M., Eini M. "CP-PGWO: multi-objective workflow scheduling for cloud computing using critical path". Cluster Computing, (2021) 1–21

  44. Saeedizade E., Ashtiani M. "DDBWS: a dynamic deadline and budget-aware workflow scheduling algorithm in workflow-as-a-service environments". The Journal of Supercomputing, (2021) 1–40

  45. Davami F., Adabi S., Rezaee A., Rahamni A.M. "Workflow Scheduling on Hybrid Fog-Cloud Environment Based on a Novel Critical Path Extraction Algorithm". Journal of Advances in Computer Engineering and Technology, (2022).

  46. De Maio, V., Kimovski, D.: Multi-objective scheduling of extreme data scientific workflows in Fog. Futur. Gener. Comput. Syst. 106, 171–184 (2020)

    Article  Google Scholar 

  47. Ross T.J. (2004) Fuzzy logic with engineering applications". Vol. 2 , Wiley Online Library

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Adabi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhound, N., Adabi, S., Rezaee, A. et al. Clustering of mobile IoT nodes with support for scheduling of time-sensitive applications in fog and cloud layers. Cluster Comput 25, 3531–3559 (2022). https://doi.org/10.1007/s10586-022-03579-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03579-2

Keywords

Navigation