Skip to main content
Log in

TrIDS: an intelligent behavioural trust based IDS for smart healthcare system

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The Medical Cyber-Physical Systems (MCPS) are composed of several medical devices and low-cost sensors for real-time diagnosis, monitoring, and decision-making. Often, the MCPS sensitive data are processed by a trusted third party. Thus, the movement of MCPS sensitive data from the data owner to the third party becomes vulnerable to many malicious activities. Also, insider attacks can be easily performed, leaking the patient’s confidential data. To overcome such security issues, the MCPS needed an Intrusion Detection System (IDS) to identify malicious activities and monitor network traffic in real-time. This paper proposes an IDS based on the behavioural trust of the Smart Medical Device (SMD) like the Medical Smart Phone (MSP). The trust value of the SMD/MSP can be evaluated using different behavioural parameters with the beta reputation model. A set of decision rules based on the dynamically computed trust degree has been proposed to check the node’s intrusive level and alert generation process. The performance of the proposed model shows 93.9% accuracy. The time and space complexity (time complexity = \({\mathcal {O}}(n^3)\) and space complexity = \({\mathcal {O}}(1)\)) and CPU overhead of the proposed model is also computed. These results show the improved performance of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Ackerman, M.J., Filart, R., Burgess, L.P., Lee, I., Poropatich, R.K.: Developing next-generation telehealth tools and technologies: patients, systems, and data perspectives. Telemed. e-Health 16(1), 93–95 (2010)

    Article  Google Scholar 

  2. Skorobogatjko, A., Romanovs, A., Kunicina, N.: State of the art in the healthcare cyber-physical systems. Inform. Technol. Manag. Sci. 17(1), 126–131 (2014)

    Google Scholar 

  3. Lee, I., Sokolsky, O.: Medical cyber physical systems. In: Design Automation Conference, pp. 743–748. IEEE (2010)

  4. Haque, S.A., Aziz, S.M., Rahman, M.: Review of cyber-physical system in healthcare. Int. J. Distrib. Sensor Netw. 10(4), 1–20217415 (2014)

    Article  Google Scholar 

  5. Agu, E., Pedersen, P., Strong, D., Tulu, B., He, Q., Wang, L., Li, Y.: The Smartphone as a Medical Device: Assessing enablers, benefits and challenges. In 2013 IEEE International Workshop of Internet-of-Things Networking and Control (IoT-NC), pp. 48–52. IEEE (2013)

  6. Dey, N., Ashour, A.S., Shi, F., Fong, S.J., Tavares, J.M.R.: Medical cyber-physical systems: a survey. J. Med. Syst. 42(4), 74 (2018)

    Article  Google Scholar 

  7. Singh, A., Chatterjee, K.: Trust based access control model for securing electronic healthcare system. J. Ambient. Intell. Humaniz. Comput. 10(11), 4547–4565 (2019)

    Article  Google Scholar 

  8. Singh, A., Chatterjee, K.: An adaptive mutual trust based access control model for electronic healthcare system. J. Ambient. Intell. Humaniz. Comput. 11, 2117–2136 (2020)

    Article  Google Scholar 

  9. Giraldo, J., Urbina, D., Cardenas, A., Valente, J., Faisal, M., Ruths, J., Tippenhauer, N.O., Sandberg, H., Candell, R.: A survey of physics-based attack detection in cyber-physical systems. ACM Comput. Surv. (CSUR) 51(4), 1–36 (2018)

    Article  Google Scholar 

  10. Carreras Guzman, N.H., Wied, M., Kozine, I., Lundteigen, M.A.: Conceptualizing the key features of cyber-physical systems in a multi-layered representation for safety and security analysis. Syst. Eng. 23(2), 189–210 (2020)

    Article  Google Scholar 

  11. Yaacoub, J.-P.A., Salman, O., Noura, H.N., Kaaniche, N., Chehab, A., Malli, M.: Cyber-physical systems security: Limitations, issues and future trends. Microprocess. Microsyst. 77, 103201 (2020)

    Article  Google Scholar 

  12. Chin, T.: Security breach: Hacker gets medical records. Am. Med. News 44, 18–19 (2001)

    Google Scholar 

  13. 2008 cyberattack on United States, Accessed 20 Dec 2020. https://en.wikipedia.org/wiki/2008_cyberattack_on_United_States

  14. Markoff, J.: Before the gunfire, cyberattacks. N.Y. Times 12, 27–28 (2008)

    Google Scholar 

  15. INTELLIGENCE, T.: SamSam: targeted ransomware attacks continue. Accessed 22 Dec 2020. https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/samsam-targeted-ransomware-attacks

  16. Singh, A., Chatterjee, K.: USTrust: a user and service trust evaluation model for cloud computing environment. Int. J. Comput. Intell. IoT 2(4), 771–776 (2018)

    Google Scholar 

  17. Singh, A., Chatterjee, K.: A mutual trust based access control framework for securing electronic healthcare system. In: 2017 14th IEEE India Council International Conference (INDICON). pp. 1–6. IEEE (2017)

  18. Milenković, A., Otto, C., Jovanov, E.: Wireless sensor networks for personal health monitoring: issues and an implementation. Comput. Commun. 29(13–14), 2521–2533 (2006)

    Article  Google Scholar 

  19. Schirner, G., Erdogmus, D., Chowdhury, K., Padir, T.: The Future of Human-in-the-loop cyber-physical systems. Computer 46(1), 36–45 (2013)

    Article  Google Scholar 

  20. Hu, L., Xie, N., Kuang, Z., Zhao, K.: Review of cyber-physical system architecture. In 2012 IEEE 15th International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops, pp. 25–30. IEEE (2012)

  21. Yilmaz, T., Foster, R., Hao, Y.: Detecting vital signs with wearable wireless sensors. Sensors 10(12), 10837–10862 (2010)

    Article  Google Scholar 

  22. Chaudhary, S., Singh, A., Chatterjee, K.: Wireless body sensor network (WBSN) security and privacy issues: a survey. Int. J. Comput. Intell. IoT 2(2), 515–521 (2019)

    Google Scholar 

  23. Sampigethaya, K., Poovendran, R.: Aviation cyber-physical systems: foundations for future aircraft and air transport. Proc. IEEE 101(8), 1834–1855 (2013)

    Article  Google Scholar 

  24. Kocsis, I., Tóth, Á.R, Szatmári, Z., Dabóczi, T., Pataricza, A., Guta, G.: Towards cyber-physical system technologies over Apache VCL. Int. J. Cloud Comput. 5(1–2), 91–111 (2016)

    Article  Google Scholar 

  25. Chun, B.N., Lee, J., Weatherspoon, H., Chun, B.N.: Netbait: a distributed worm detection service. Intel Res Berkeley Tech Rep IRB-TR-03 33, 1–11 (2003)

    Google Scholar 

  26. Huebsch, R., Chun, B., Hellerstein, J., Loo, B., Maniatis, P., Roscoe, T., Shenker, S., Stoica, I., Yumerefendi, A.: The architecture of PIER: an internet-scale query processor. In: Proceedings of the 2005 Conference on Innovative Data Systems Research (CIDR), p. 28-43 (2005)

  27. Porras, P. A., Neumann, P. G.: EMERALD: event monitoring enabling responses to anomalous live disturbances . In: 1997 National Information Systems Security Conference, pp. 1–15 (1997)

  28. Snapp, S. R., Brentano, J., Dias, G., Goan, T. L., Heberlein, L. T., Ho, C.-L., Levitt, K. N.: DIDS (distributed intrusion detection system)-motivation, architecture, and an early prototype. In: Proceedings of the 14th National Computer Security Conference, p. 167-176 (1991)

  29. Li, Z., Chen, Y., Beach, A.: Towards scalable and robust distributed intrusion alert fusion with good load balancing. LSAD '06, pp. 115-122. ACM (2006)

  30. Meng, W., Li, W., Su, C., Zhou, J., Lu, R.: Enhancing trust management for wireless intrusion detection via traffic sampling in the era of big data. IEEE Access 6, 7234–7243 (2018)

    Article  Google Scholar 

  31. Anguraj, D.K., Smys, S.: Trust-based intrusion detection and clustering approach for wireless body area networks. Wireless Pers. Commun. 104(1), 1–20 (2019)

    Article  Google Scholar 

  32. Celdrán, A.H., Pérez, M.G., Clemente, F.J.G., Pérez, G.M.: Sustainable securing of medical cyber-physical systems for the healthcare of the future. Sustain. Comput.: Inform. Syst. 19, 138–146 (2018)

    Google Scholar 

  33. Sadreazami, H., Mohammadi, A., Asif, A., Plataniotis, K.N.: Distributed-graph-based statistical approach for intrusion detection in cyber-physical systems. IEEE Transact. Signal Inform. Process Over Netw 4(1), 137–147 (2017)

    Article  MathSciNet  Google Scholar 

  34. Loukas, G., Vuong, T., Heartfield, R., Sakellari, G., Yoon, Y., Gan, D.: Cloud-based cyber-physical intrusion detection for vehicles using deep learning. IEEE Access 6, 3491–3508 (2017)

    Article  Google Scholar 

  35. Wang, K., Du, M., Yang, D., Zhu, C., Shen, J., Zhang, Y.: Game-theory-based active defense for intrusion detection in cyber-physical embedded systems. ACM Trans. Embedded Comput. Syst. (TECS) 16(1), 1–21 (2016)

    Google Scholar 

  36. Rajeshkumar, G., Valluvan, K.: An energy aware trust based intrusion detection system with adaptive acknowledgement for wireless sensor network. Wireless Pers. Commun. 94(4), 1993–2007 (2017)

    Article  Google Scholar 

  37. Li, W., Meng, W. et al.: Design of intrusion sensitivity-based trust management model for collaborative intrusion detection networks. In: IFIP International Conference on Trust Management, pp. 61–76. Springer (2014)

  38. Duma, C., Karresand, M., Shahmehri, N., Caronni, G.: A trust-aware, P2P-based overlay for intrusion detection. In: 17th International Workshop on Database and Expert Systems Applications (DEXA’06)

  39. Shaikh, R.A., Jameel, H., d’Auriol, B.J., Lee, H., Lee, S., Song, Y.-J.: Group-based trust management scheme for clustered wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 20(11), 1698–1712 (2009)

    Article  Google Scholar 

  40. Zhang, J., Shankaran, R., Orgun, M. A., Varadharajan, V., Sattar, A.: A dynamic trust establishment and management framework for wireless sensor networks. In: 2010 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, pp. 484–491 (2010)

  41. Meng, Y., Kwok, L.-F.: Enhancing false alarm reduction using voted ensemble selection in intrusion detection. Int. J. Comput. Intell. Syst. 6(4), 626–638 (2013)

    Article  Google Scholar 

  42. Meng, W., Li, W., Xiang, Y., Choo, K.-K.R.: A bayesian inference-based detection mechanism to defend medical smartphone networks against insider attacks. J. Netw. Comput. Appl. 78, 162–169 (2017)

    Article  Google Scholar 

  43. Meng, W., Li, W., Wang, Y., Au, M.H.: Detecting insider attacks in medical cyber-physical networks based on behavioral profiling. Futur. Gener. Comput. Syst. 108, 1258–1266 (2020)

    Article  Google Scholar 

  44. Ruan, X., Wu, Z., Wang, H., Jajodia, S.: Profiling online social behaviors for compromised account detection. IEEE Trans. Inf. Forensics Secur. 11(1), 176–187 (2015)

    Article  Google Scholar 

  45. Guo, J., Marshall, A., Zhou, B.: A new trust management framework for detecting malicious and selfish behaviour for mobile ad hoc networks. In: 2011 IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications, pp. 142–149 (2011)

  46. Daabaj, K., Dixon, M., Koziniec, T., Lee, K.: Trusted routing for resource-constrained wireless sensor networks. In: 2010 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, pp. 666–671 (2010)

  47. Kerrache, C.A., Lagraa, N., Calafate, C.T., Lakas, A.: TFDD: a trust-based framework for reliable data delivery and DoS defense in VANETs. Vehicular Commun. 9, 254–267 (2017)

    Article  Google Scholar 

  48. Kshirsagar, D., Kumar, S.: Towards an intrusion detection system for detecting web attacks based on an ensemble of filter feature selection techniques. Cyber-Phys. Syst. pp. 1–16 (2022)

  49. Jagtap, S.S., Subramaniyaswamy, S.: A hypergraph based Kohonen map for detecting intrusions over cyber-physical systems traffic. Future Generat. Comput. Syst. 119, 84–109 (2021)

    Article  Google Scholar 

  50. Thakur, S., Chakraborty, A., De, R., Kumar, N., Sarkar, R.: Intrusion detection in cyber-physical systems using a generic and domain specific deep autoencoder model. Comput. Electr. Eng. 91, 107044 (2021)

    Article  Google Scholar 

  51. Althobaiti, M.M., Kumar, K.P.M., Gupta, D., Kumar, S., Mansour, R.F.: An intelligent cognitive computing based intrusion detection for industrial cyber-physical systems. Measurement 186, 110145 (2021)

    Article  Google Scholar 

  52. Alohali, M. A, Al-Wesabi, F. N., Hilal, A. M., Goel, S., Gupta, D., Khanna, A.: Artificial intelligence enabled intrusion detection systems for cognitive cyber-physical systems in industry 4.0 environment,” Cognitive Neurodynamics, pp. 1–13 (2022)

  53. Semwal, P., Handa, A.: Cyber-attack detection in cyber-physical systems using supervised machine learning. In: Handbook of Big Data Analytics and Forensics, pp. 131–140. Springer (2022)

  54. Sunagar, P. C., Kanavalli, A. et al.: Intrusion detection system using deep learning. In: Deep Learning Applications for Cyber-Physical Systems, pp. 160–181. IGI Global (2022)

  55. Aishwarya, R., Ajitha, M., Sheryl Oliver, A.: Model for intrusion detection in cyber-physical system to address network simulation. In: ICT Systems and Sustainability. pp. 65–73. Springer (2022)

  56. Dutta, A. K., Negi, R., Shukla, S. K.: Robust multivariate anomaly-based intrusion detection system for cyber-physical systems. In: International Symposium on Cyber Security Cryptography and Machine Learning, pp. 86–93, Springer (2021)

  57. Sharma, M., Elmiligi, H., Gebali, F.: A novel intrusion detection system for rpl-based cyber-physical systems. IEEE Can. J. Electr. Comput. Eng. 44(2), 246–252 (2021)

    Article  Google Scholar 

  58. Eltanbouly, S. S.: Multimodal intrusion detection system for cyber physical systems.’ Master’s thesis (2021)

  59. Zimmer, C., Bhat, B., Mueller, F., Mohan, S.: Time-based intrusion detection in cyber-physical systems. In: Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical Systems, pp. 109–118 (2010)

  60. Sabater, J., Sierra, C.: REGRET: reputation in gregarious societies. In: Proceedings of the fifth international conference on Autonomous agents, pp. 194–195 (2001)

  61. Zhang, Y., Wang, L., Sun, W., Green, R.C., II., Alam, M.: Distributed intrusion detection system in a multi-layer network architecture of smart grids. IEEE Trans. Smart Grid 2(4), 796–808 (2011)

    Article  Google Scholar 

  62. Bao, F., Chen, R., Chang, M., Cho, J.-H.: Trust-based intrusion detection in wireless sensor networks. In: 2011 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2011)

  63. Hawrylak, P. J., Haney, M., Papa, M., Hale, J.: Using hybrid attack graphs to model cyber-physical attacks in the Smart Grid. In: 2012 5th International Symposium on Resilient Control Systems, pp. 161–164. IEEE (2012)

  64. Idowu, S.A., Omotosho, O.J., Ojesanmi, O.A., Maitanmi, S.O.: Cyber-physical systems: a framework for prediction of error in smart medical devices. Am. J. Softw. Eng. Appl. 4(4), 71–9 (2015)

    Google Scholar 

  65. Ghugar, U., Pradhan, J., Bhoi, S.K., Sahoo, R.R., Panda, S.K.: PL-IDS: physical layer trust based intrusion detection system for wireless sensor networks. Int. J. Inf. Technol. 10(4), 489–494 (2018)

    Google Scholar 

  66. Ghugar, U., Pradhan, J., Bhoi, S. K., Sahoo, R. R.: LB-IDS: securing wireless sensor network using protocol layer trust-based intrusion detection system. J. Comput. Netw. Commun. 2019 (2019)

  67. Lamba, A.: A through analysis on protecting cyber threats and attacks on cps embedded subsystems. Int. J. Curr. Eng. Sci. Res. (IJCESR) 1(3), 1–8 (2014)

    Google Scholar 

  68. Luo, Y., Xiao, Y., Cheng, L., Peng, G., Yao, D. D.: Deep Learning-Based Anomaly Detection in Cyber-Physical Systems: Progress and Opportunities. arXiv preprint arXiv:2003.13213 (2020)

  69. Jiang, W., Wang, G., Bhuiyan, M.Z.A., Wu, J.: Understanding graph-based trust evaluation in online social networks: methodologies and challenges. ACM Comput. Surv. (CSUR) 49(1), 1–35 (2016)

    Article  Google Scholar 

  70. Vasani, V., Chudasama, V.: A trust rating model using fuzzy logic in cloud. In: International Conference on Innovative Computing and Communications, pp. 339–348. Springer (2019)

  71. Xia, H., Jia, Z., Ju, L., Zhu, Y.: Trust management model for mobile ad hoc network based on analytic hierarchy process and fuzzy theory. IET Wireless Sensor Syst. 1(4), 248–266 (2011)

    Article  Google Scholar 

  72. Raghebi, Z., Hashemi, M. R.: A new trust evaluation method based on reliability of customer feedback for cloud computing. In: 2013 10th International ISC conference on information security and cryptology (ISCISC), pp. 1–6, IEEE (2013)

  73. Mui, L., Mohtashemi, M., Halberstadt, A.: A computational model of trust and reputation. In: Proceedings of the 35th Annual Hawaii International Conference on System Sciences, pp. 2431–2439. IEEE (2002)

  74. Deshpande, S., Ingle, R.: Evidence based trust estimation model for cloud computing services. Int. J. Netw. Sec. 20(2), 291–303 (2018)

    Google Scholar 

  75. Manuel, P.: A trust model of cloud computing based on quality of service. Ann. Oper. Res. 233(1), 281–292 (2015)

    Article  Google Scholar 

  76. Fang, W., Zhang, C., Shi, Z., Zhao, Q., Shan, L.: BTRES: beta-based trust and reputation evaluation system for wireless sensor networks. J. Netw. Comput. Appl. 59, 88–94 (2016)

    Article  Google Scholar 

  77. Jøsang, A., Ismail, R.: The beta reputation system. In: Proceedings of the 15th bled electronic commerce conference, vol. 5, pp. 2502–2511 (2002)

  78. Hu, H., Lu, R., Zhang, Z.: TPSQ: trust-based platoon service query via vehicular communications. Peer-to-Peer Network. Appl. 10(1), 262–277 (2017)

    Article  Google Scholar 

  79. Jing, S., Tang, Y., Yan, J.: The application of fuzzy VIKOR for the design scheme selection in lean management. Mathem Probl. Eng. 2018 (2018)

  80. Ashtiani, M., Azgomi, M.A.: Trust modeling based on a combination of fuzzy analytic hierarchy process and fuzzy VIKOR. Soft. Comput. 20(1), 399–421 (2016)

    Article  Google Scholar 

  81. Chatterjee, K., Neha: Continuous user authentication system: a risk analysis based approach. Wireless Person. Commun. 108(1), 281–295 (2019)

    Article  Google Scholar 

  82. Lu, K., Wang, J., Xie, L., Zhen, Q., Li, M.: An eigentrust-based hybrid trust model in P2P file sharing networks. Proc. Comput. Sci. 94, 366–371 (2016)

    Article  Google Scholar 

  83. Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res. 30(1), 79–82 (2005)

    Article  Google Scholar 

  84. Singh, A., Chatterjee, K.: ITrust: identity and trust based access control model for healthcare system security. Multim. Tools Appl. 78(19), 28309–28330 (2019)

    Article  Google Scholar 

  85. Tofallis, C.: A better measure of relative prediction accuracy for model selection and model estimation. J. Operat. Res. Soc. 66(8), 1352–1362 (2015)

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

AS: writing—original draft preparation, methodology, methodology, conceptualization, analysis and interpretation of results. KC: visualization, investigation, supervision. SCS: validation, reviewing and editing. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Ashish Singh.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethical approval

We did not use animals and human participants in the study reported in this work

Informed consent

For this type of study informed consent is not required.

Consent for publication

For this type of study consent for publication is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Chatterjee, K. & Satapathy, S.C. TrIDS: an intelligent behavioural trust based IDS for smart healthcare system. Cluster Comput 26, 903–925 (2023). https://doi.org/10.1007/s10586-022-03614-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03614-2

Keywords

Navigation