Skip to main content

Advertisement

Log in

MultiHop optimal time complexity clustering for emerging IoT applications

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The sixth-generation (6G) wireless communication networks are expected to support heterogeneous services and decentralized infrastructure with resource-aware smart self-organization for Internet of Things (IoT) applications. Large-scale IoT applications face challenges like load balancing and scalability within the network due to the inherent vulnerability of ad-hoc structures. This paper proposes a multiHop constant-time complexity clustering algorithm (MultiHopFast) for IoT networks to address these challenges. The proposed MultiHopFast algorithm reduces the computing burden from IoT nodes with smart load balancing to ensure IoT network scalability. The algorithm addresses the network load, scalability, and time efficiency challenges. Using neighbourhood heuristics, the MultiHopFast algorithm builds appropriate size (i.e., up to 5 hops) of clusters with participating IoT nodes. Each cluster is associated with a cluster head (CH) (or a coordinator). The MultiHopFast algorithm probabilistically selects CH for each cluster. When compared with state-of-the-art counterparts, MultiHopFast algorithm: (i) operates with constant-time complexity in a large scale network as well as in small-scale networks, (ii) runs without any impact on network scalability, and (iii) creates 12% fewer CHs to save precious resources such as energy. Better use of heuristics and resource-aware self-organization, constant-time computational complexity, and network operation with fewer CHs demonstrate that the performance of the MultiHopFast algorithm surpasses the compared algorithms in the literature. The MultiHopFast algorithm is envisioned as a better candidate to match the standard and expectations set by the 6G wireless communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The present study is based on synthesized data generated randomly by the authors based on some parameters mentioned in the above text.

References

  1. Akhtar, M.W., Hassan, S.A., Ghaffar, R., Jung, H., Garg, S., Hossain, M.S.: The shift to 6G communications: vision and requirements. Hum. Centric Comput. Inf. Sci. 10(1), 1–27 (2020)

    Article  Google Scholar 

  2. Akpakwu, G.A., Silva, B.J., Hancke, G.P., Abu-Mahfouz, A.M.: A survey on 5G networks for the Internet of Things: communication technologies and challenges. IEEE Access 6, 3619–3647 (2017)

    Article  Google Scholar 

  3. Ali, H.M., Liu, J., Bukhari, S.A.C., Rauf, H.T.: Planning a secure and reliable IoT-enabled fog-assisted computing infrastructure for healthcare. Clust. Comput. 25, 1–19 (2021)

    Google Scholar 

  4. Ali, H.M., Liu, J., Ejaz, W.: Planning capacity for 5G and beyond wireless networks by discrete fireworks algorithm with ensemble of local search methods. EURASIP J. Wirel. Commun. Netw. 2020(1), 1–24 (2020)

    Article  Google Scholar 

  5. Ali, H.M., et al.: Optimising the power using firework-based evolutionary algorithms for emerging IoT applications. IET Netw. 8(1), 15–31 (2019)

    Article  MathSciNet  Google Scholar 

  6. Amine, D., Nasr-Eddine, B., Abdelhamid, L.: A distributed and safe weighted clustering algorithm for mobile wireless sensor networks. Procedia Comput. Sci. 52, 641–646 (2015)

    Article  Google Scholar 

  7. Bednarczyk, W., Gajewski, P.: An enhanced algorithm for MANET clustering based on weighted parameters. Univers. J. Commun. Netw. 1(3), 88–94 (2013)

    Article  Google Scholar 

  8. Behera, T.M., Samal, U.C., Mohapatra, S.K.: Energy-efficient modified leach protocol for IoT application. IET Wirel. Sens. Syst. 8(5), 223–228 (2018)

    Article  Google Scholar 

  9. Bomgni, A.B., Mdemaya, G.B.J., Ali, H.M., Zanfack, D.G., Zohim, E.G.: ESPINA: efficient and secured protocol for emerging IoT network applications. Clust. Comput. (2022). https://doi.org/10.1007/s10586-021-03493-z

    Article  Google Scholar 

  10. Bomgni, A.B., Mtopi, Y.B.C.: Calibrated clustering algorithm for mobile ad hoc network. Int. J. Comput. Sci. Inf. Secur. 17(3), 63–69 (2019)

    Google Scholar 

  11. De Alwis, C., Kalla, A., Pham, Q.-V., Kumar, P., Dev, K., Hwang, W.-J., Liyanage, M.: Survey on 6G frontiers: trends, applications, requirements, technologies and future research. IEEE Open J. Commun. Soc. 2, 836–886 (2021)

    Article  Google Scholar 

  12. De Lima, C., Belot, D., Berkvens, R., Bourdoux, A., Dardari, D., Guillaud, M., Isomursu, M., Lohan, E.-S., Miao, Y., Barreto, A.N., et al.: Convergent communication, sensing and localization in 6G systems: an overview of technologies, opportunities and challenges. IEEE Access 9, 26902–26925 (2021)

    Article  Google Scholar 

  13. Elhoseny, M., Farouk, A., Zhou, N., Wang, M.-M., Abdalla, S., Batle, J.: Dynamic multi-Hop clustering in a wireless sensor network: performance improvement. Wirel. Pers. Commun. 95(4), 3733–3753 (2017)

    Article  Google Scholar 

  14. Fadi, A.-T., Sinem, A.: Context-sensitive access in industrial Internet of Things (IIoT) healthcare applications. IEEE Trans. Ind. Inform. 14(6), 2736–2744 (2018)

    Article  Google Scholar 

  15. Farooq, M.O.: Clustering-based layering approach for uplink multi-Hop communication in LoRa networks. IEEE Netw. Lett. 2(3), 132–135 (2020)

    Article  Google Scholar 

  16. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, p. 10. IEEE (2000)

  17. Hernández-Ramos, J.L., Bernabé, J.B., Skarmeta, A.: ARMY: architecture for a secure and privacy-aware lifecycle of smart objects in the Internet of my things. IEEE Commun. Mag. 54(9), 28–35 (2016)

    Article  Google Scholar 

  18. Huang, T., Yang, W., Wu, J., Ma, J., Zhang, X., Zhang, D.: A survey on green 6G network: architecture and technologies. IEEE Access 7, 175758–175768 (2019)

    Article  Google Scholar 

  19. Jagannath, J., Polosky, N., Jagannath, A., Restuccia, F., Melodia, T.: Machine learning for wireless communications in the Internet of Things: a comprehensive survey. Ad Hoc Netw. 93, 101913 (2019)

    Article  Google Scholar 

  20. Jiang, W., Han, B., Habibi, M.A., Schotten, H.D.: The road towards 6G: a comprehensive survey. IEEE Open J. Commun. Soc. 2, 334–366 (2021)

    Article  Google Scholar 

  21. Khan, M.F., Aadil, F., Maqsood, M., Bukhari, S.H.R., Hussain, M., Nam, Y.: Moth flame clustering algorithm for Internet of vehicle (MFCA-IoV). IEEE Access 7, 11613–11629 (2018)

    Article  Google Scholar 

  22. Kong, L., Xiang, Q., Liu, X., Liu, X.-Y., Gao, X., Chen, G., Wu, M.-Y.: ICP instantaneous clustering protocol for wireless sensor networks. Comput. Netw. 101, 144–157 (2016)

    Article  Google Scholar 

  23. Kour, H., Sharma, A.K.: Hybrid energy efficient distributed protocol for heterogeneous wireless sensor network. Int. J. Comput. Appl. 4(6), 1–5 (2010)

    Google Scholar 

  24. Kumar, J.S., Zaveri, M.A.: Clustering approaches for pragmatic two-layer IoT architecture. Wirel. Commun. Mob. Comput. (2018). https://doi.org/10.1155/2018/8739203

    Article  Google Scholar 

  25. Li, Z., Nie, F., Chang, X., Nie, L., Zhang, H., Yang, Y.: Rank-constrained spectral clustering with flexible embedding. IEEE Trans. Neural Netw. Learn. Syst. 29(12), 6073–6082 (2018)

    Article  MathSciNet  Google Scholar 

  26. Li, Z., Nie, F., Chang, X., Yang, Y., Zhang, C., Sebe, N.: Dynamic affinity graph construction for spectral clustering using multiple features. IEEE Trans. Neural Netw. Learn. Syst. 29(12), 6323–6332 (2018)

    Article  MathSciNet  Google Scholar 

  27. Lv, Z., Kumar, N.: Software defined solutions for sensors in 6G/IoE. Comput. Commun. 153, 42–47 (2020)

    Article  Google Scholar 

  28. Mahajan, A., Sharma, K., Scholar, M.: An approach towards unequal clustering in wireless sensor networks. Int. J. Eng. Sci. 13195 (2017)

  29. Manogaran, G., Varatharajan, R., Lopez, D., Kumar, P.M., Sundarasekar, R., Thota, C.: A new architecture of Internet of Things and big data ecosystem for secured smart healthcare monitoring and alerting system. Future Gener. Comput. Syst. 82, 375–387 (2018)

    Article  Google Scholar 

  30. Meddah, M., Haddad, R., Ezzedine, T.: An energy efficient and density control clustering algorithm for wireless sensor network. In: 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 357–364. IEEE (2017)

  31. Mohapatra, H., Rath, A.K.: Fault tolerance in WSN through PE-LEACH protocol. IET Wirel. Sens. Syst. 9(6), 358–365 (2019)

    Article  Google Scholar 

  32. Naik, K.P., Joshi, U.R.: Performance analysis of constrained application protocol using Cooja simulator in Contiki OS. In: IEEE International Conference on Intelligent Computing. Instrumentation and Control Technologies, pp. 547–550. IEEE (2017)

  33. Nayak, S., Patgiri, R.: 6G communication technology: a vision on intelligent healthcare. In: Health Informatics: A Computational Perspective in Healthcare, pp. 1–18. Springer, Singapore (2021)

  34. Palattella, M.R., Dohler, M., Grieco, A., Rizzo, G., Torsner, J., Engel, T., Ladid, L.: Internet of Things in the 5G era: enablers, architecture, and business models. IEEE J. Sel. Areas Commun. 34(3), 510–527 (2016)

    Article  Google Scholar 

  35. Patil, M., Biradar, R.C.: Energy efficient weighted clustering algorithm in wireless sensor networks. Glob. J. Comput. Sci. Technol. 17(2) (2017)

  36. Pratim, R.: A survey on Internet of Things architectures. J. King Saud Univ. Comput. Inf. Sci. 30(3), 291–319 (2018)

    Google Scholar 

  37. Reddy, D.: A review-efficiency of energy clustering and routing in wireless sensor networks. Int. J. Adv. Technol. 10(222), 2 (2019)

    Google Scholar 

  38. Sadek, R.A.: Hybrid energy aware clustered protocol for IoT heterogeneous network. Future Comput. Inform. J. 3(2), 166–177 (2018)

    Article  Google Scholar 

  39. Senouci, O., Aliouat, Z., Harous, S.: MCA-V2I: a multi-Hop clustering approach over vehicle-to-internet communication for improving VANETs performances. Future Gener. Comput. Syst. 96, 309–323 (2019)

    Article  Google Scholar 

  40. Singh, S.K., Kumar, P., Singh, J.P., Alryalat, M.A.A.: An energy efficient routing using Multi-Hop intra clustering technique in WSNs. In: TENCON 2017—2017 IEEE Region 10 Conference, pp. 381–386. IEEE (2017)

  41. Sivanathan, A., Gharakheili, H.H., Sivaraman, V.: Inferring IoT device types from network behavior using unsupervised clustering. In: IEEE LCN. IEEE (2019)

  42. Soldani, D., Manzalini, A.: Horizon 2020 and beyond: on the 5G operating system for a true digital society. IEEE Veh. Technol. Mag. 10(1), 32–42 (2015)

    Article  Google Scholar 

  43. Sun, Z., Xing, X., Wang, T., Lv, Z., Yan, B.: An optimized clustering communication protocol based on intelligent computing in information-centric Internet of Things. IEEE Access 7, 28238–28249 (2019)

    Article  Google Scholar 

  44. Sung, Y., Lee, S., Lee, M.: A multi-Hop clustering mechanism for scalable IoT networks. Sensors 18(4), 961 (2018)

    Article  Google Scholar 

  45. Tataria, H., Shafi, M., Molisch, A.F., Dohler, M., Sjöland, H., Tufvesson, F.: 6G wireless systems: vision, requirements, challenges, insights, and opportunities. Proc. IEEE 109(7), 1166–1199 (2021)

    Article  Google Scholar 

  46. Umamaheswari, S., Negi, A.: Internet of Things and RPL routing protocol: a study and evaluation. In: 2017 IEEE International Conference on Computer Communication and Informatics (ICCCI), pp. 1–7. IEEE (2017)

  47. Wang, C., Zhang, Y., Wang, X., Zhang, Z.: Hybrid multi-Hop partition-based clustering routing protocol for WSNs. IEEE Sens. Lett. 2(1), 1–4 (2018)

    Article  MathSciNet  Google Scholar 

  48. Wang, T., Bhuiyan, M.Z.A., Wang, G., Rahman, M.A., Wu, J., Cao, J.: Big data reduction for a smart city’s critical infrastructural health monitoring. IEEE Commun. Mag. 56(3), 128–133 (2018)

    Article  Google Scholar 

  49. Xiong, J., Ren, J., Chen, L., Yao, Z., Lin, M., Wu, D., Niu, B.: Enhancing privacy and availability for data clustering in intelligent electrical service of IoT. IEEE Internet Things J. 6(2), 1530–1540 (2018)

    Article  Google Scholar 

  50. Yaqoob, I., Ahmed, E., Hashem, I.A.T., Ahmed, A.I.A., Gani, A., Imran, M., Guizani, M.: Internet of Things architecture: recent advances, taxonomy, requirements, and open challenges. IEEE Wirel. Commun. 24(3), 10–16 (2017)

    Article  Google Scholar 

  51. You, X., Wang, C.-X., Huang, J., Gao, X., Zhang, Z., Wang, M., Huang, Y., Zhang, C., Jiang, Y., Wang, J., et al.: Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci. China Inf. Sci. 64(1), 1–74 (2021)

    Article  Google Scholar 

  52. Zhang, Y., Wang, Y.: A novel energy-aware bio-inspired clustering scheme for IoT communication. J. Ambient Intell. Humaniz. Comput. 11, 1–10 (2020)

    Article  Google Scholar 

  53. Zhu, Y., Chevalier, K., Wang, X., Wang, N.: Efficient mobile edge computing for mobile Internet of Things in 5G networks. In: Proceedings of the 53rd Hawaii International Conference on System Sciences, p. 01 (2020)

Download references

Author information

Authors and Affiliations

Authors

Contributions

This work was conceptualized and designed by YC and ABB. Experiment was designed by YC, ABB, HMA and DGZ. Initial draft was prepared by YC and ABB. After initial draft, HMA, YC, ABB, DGZ, CTD, EGZ, WE give input to improve quality and presentation. EGZ is PI of this work and edited first and subsequent draft of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Alain Bertrand Bomgni.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mtopi, Y.B.C., Bomgni, A.B., Ali, H.M. et al. MultiHop optimal time complexity clustering for emerging IoT applications. Cluster Comput 26, 993–1009 (2023). https://doi.org/10.1007/s10586-022-03637-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03637-9

Keywords

Navigation