Abstract
The advent of the Industrial Internet of Things (IIoT) integrates all manners of computing technologies, from tiny actuators to process-intensive servers. The distributed network of IoT devices relies on centralized architecture to compensate for their lack of resources. Within this complex network, it is crucial to ensure the security and privacy of data in the IIoT systems as they involve real-time functions that manage people’s movement and industrial materials like chemicals, radio-active goods, and large equipment. Intrusion Detection Systems (IDS) have been widely used to detect and thwart cyber-attacks on such systems. However, these are inefficient for the multi-layered IIoT networks which include heterogeneous protocol standards and topologies. With the need for a novel security method, the integration of collaborative IDS (CIDS) and blockchain has become a disruptive technology to ensure secure and trustable network transactions. Which detection methodology is suitable for this integration, and IIoT? Will blockchain render IIoT completely immune to cyber-attacks? In this paper, we provide a comprehensive review of the state of the art, analyze, and classify the integration approaches of CIDS and blockchain, and discuss suitable approaches for securing IIoT systems. We also categorize the major blockchain vulnerabilities with their potential losses to expose significant gaps for future research directions.







Similar content being viewed by others
Data availability
Not applicable.
References
Weiser, M.: The computer for the 21st century. ACM Sigmobile Mob. Comput. Commun. Rev. 3(3), 3–11 (1999). https://doi.org/10.1145/329124.329126
Lu, Y.: The blockchain: State-of-the-art and research challenges. J. Indust. Inform. Integr. 15, 80–90 (2019). https://doi.org/10.1016/j.jii.2019.04.002
Da Xu, L., He, W., Li, S.: Internet of things in industries: a survey. IEEE Trans. Industr. Inf. 10(4), 2233–2243 (2014). https://doi.org/10.1109/TII.2014.2300753
Li, Y., Hou, M., Liu, H., Liu, Y.: Towards a theoretical framework of strategic decision, supporting capability and information sharing under the context of Internet of Things. Inf. Technol. Manag. 13(4), 205–216 (2012). https://doi.org/10.1007/s10799-012-0121-1
Aron, N., Yemane, B., Mikael, T., Salem, R. Belqasmi, F.: A WUSN-based smart system for water flow control. In: IEEE 2020 12th Annual Undergraduate Research Conference on Applied Computing. URC 2020, (2020) doi: https://doi.org/10.1109/URC49805.2020.9099183
Sengupta, J., Ruj, S., Bit, S.D.: A comprehensive survey on attacks, security issues and blockchain solutions for IoT and IIoT”. J. Netw. Comput. Appl. (2020). https://doi.org/10.1016/j.jnca.2019.102481
Zarei, M., Mohammadian, A., Ghasemi, R.: Internet of things in industries: a survey for sustainable development. Int. J. Innovat. Sustain. Dev. 10(4), 419–442 (2016). https://doi.org/10.1504/IJISD.2016.079586
Vitturi, S., Zunino, C., Sauter, T.: Industrial communication systems and their future challenges: next-generation ethernet, IIoT, and 5G. Proc. IEEE 107(6), 944–961 (2019). https://doi.org/10.1109/JPROC.2019.2913443
Song, Y., Liu, T., Wei, T., Wang, X., Tao, Z., Chen, M.: FDA3: federated defense against adversarial attacks for cloud-based IIoT applications. IEEE Trans. Ind. Inform. 4, 1–1 (2020). https://doi.org/10.1109/tii.2020.3005969
Saleem, Y., Salim, F., Rehmani, M.H.: Resource management in mobile sink based wireless sensor networks through cloud computing. Model. Optim. Sci. Technol. 10, 15 (2014)
Mell, P., Grance, T.: The NIST-National Institute of Standars and Technology- definition of cloud computing. NIST Special Publication 800-145, (2011)
Trabelsi, Z., Hayawi, K., Al Braiki, A., Mathew, S.S.: Network attacks and defenses. (2012)
Mosenia, A., Jha, N.K.: A comprehensive study of security of internet-of-things. IEEE Trans. Emerg. Top. Comput. 5(4), 586–602 (2017). https://doi.org/10.1109/TETC.2016.2606384
Hassanzadeh, A., Modi, S., Mulchandani, S.: Towards effective security control assignment in the Industrial Internet of Things. In: IEEE World Forum on Internet of Things, WF-IoT 2015 - Proceedings, pp. 795–800, (2015) doi: https://doi.org/10.1109/WF-IoT.2015.7389155
K. Hayawi, P., Ho, H., Mathew, S.S., Peng, L.: Securing the internet of things: a worst-case analysis of trade-off between query-anonymity and communication-cost. In: Proceedings—International Conference on Advanced Information Networking and Applications, AINA, pp. 939–946 (2017). doi: https://doi.org/10.1109/AINA.2017.76
Zhou, L., Guo, H.: Anomaly detection methods for IIoT networks. In: Proceedings of the 2018 IEEE International conference on service operations and logistics, and informatics, SOLI 2018, pp. 214–219, (2018). doi: https://doi.org/10.1109/SOLI.2018.8476769.
Wu, Y.S., Foo, B., Mei, Y., Bagchi, S.: Collaborative intrusion detection system (CIDS): A framework for accurate and efficient IDS. In: Proceedings—annual computer security applications conference, ACSAC, 2003, vol. 2003, pp. 234–244, doi: https://doi.org/10.1109/CSAC.2003.1254328
Aldweesh, A., Derhab, A., Emam, A.Z.: Deep learning approaches for anomaly-based intrusion detection systems: a survey, taxonomy, and open issues. Knowledge-Based Syst. (2020). https://doi.org/10.1016/j.knosys.2019.105124
Yu, X., Guo, H., A survey on IIoT security. In: Proceedings—2019 IEEE VTS Asia pacific wireless communications symposium, APWCS 2019, (2019), doi: https://doi.org/10.1109/VTS-APWCS.2019.8851679
Dawit, N.A., Mathew, S.S., Hayawi, K.: Suitability of blockchain for collaborative intrusion detection systems. In: Proceedings—2020 12th Annual Undergraduate Research Conference on Applied Computing, URC 2020, doi: https://doi.org/10.1109/URC49805.2020.9099189
Makhdoom, I., Hayawi, K., Kaosar, M., Mathew, S.S., Ho, P.H.: D2Gen: a decentralized device genome based integrity verification mechanism for collaborative intrusion detection systems. IEEE Access 9, 137260–137280 (2021). https://doi.org/10.1109/ACCESS.2021.3117938
Zhang, K., Zhu, Y., Maharjan, S., Zhang, Y.: Edge intelligence and blockchain empowered 5G beyond for the industrial internet of things. IEEE Netw. 33(5), 12–19 (2019). https://doi.org/10.1109/MNET.001.1800526
Lu, Y., Huang, X., Dai, Y., Maharjan, S., Zhang, Y.: Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Trans. Ind. Inform. 16(6), 4177–4186 (2020). https://doi.org/10.1109/TII.2019.2942190
Liu, C.H., Lin, Q., Wen, S.: Blockchain-enabled data collection and sharing for industrial iot with deep reinforcement learning. IEEE Trans. Ind. Inform. 15(6), 3516–3526 (2019). https://doi.org/10.1109/TII.2018.2890203
Zyskind, G. Nathan, O., Pentland, A.S.: Decentralizing privacy: using blockchain to protect personal data. In: Proceedings—2015 IEEE security and privacy workshops, SPW 2015, (2015). pp. 180–184, doi: https://doi.org/10.1109/SPW.2015.27
Wan, J., Li, J., Imran, M., Li, D.: A blockchain-based solution for enhancing security and privacy in smart factory. IEEE Trans. Ind. Inform. (2019). https://doi.org/10.1109/TII.2019.2894573
Li, W., Tug, S., Meng, W., Wang, Y.: Designing collaborative blockchained signature-based intrusion detection in IoT environments. Futur. Gener. Comput. Syst. 96, 481–489 (2019). https://doi.org/10.1016/j.future.2019.02.064
Golomb, T., Mirsky, Y., Elovici, Y.: CIoTA: collaborative anomaly detection via blockchain. (2018), doi: https://doi.org/10.14722/diss.2018.23003
Szabo, N.: Formalizing and securing relationships on public networks. First Monday (1997). https://doi.org/10.5210/fm.v2i9.548
Luu, L., et al.: Are blockchains immune to all malicious attacks? Future Generat. Comput. Syst. 49(1), 25 (2018). https://doi.org/10.1186/s40854-016-0046-5
Khan, M.A., Salah, K.: IoT security: review, blockchain solutions, and open challenges. Futur. Gener. Comput. Syst. 82, 395–411 (2018). https://doi.org/10.1016/j.future.2017.11.022
Taylor, P.J., Dargahi, T., Dehghantanha, A., Parizi, R.M., Choo, K.K.R.: A systematic literature review of blockchain cyber security. Digit. Commun. Netw. 6(2), 147–156 (2020). https://doi.org/10.1016/J.DCAN.2019.01.005
Meng, W., Tischhauser, E.W., Wang, Q., Wang, Y., Han, J.: When intrusion detection meets blockchain technology: a review. IEEE Access 6, 10179–10188 (2018). https://doi.org/10.1109/ACCESS.2018.2799854
Nguyen, G.T., Kim, K.: A survey about consensus algorithms used in Blockchain. J. Inf. Process. Syst. (2018). https://doi.org/10.3745/JIPS.01.0024
Wright, C.S.: Bitcoin: a peer-to-peer electronic cash system. SSRN Electron. J. (2019). https://doi.org/10.2139/ssrn.3440802
Mingxiao, D., Xiaofeng, M., Zhe, Z., Xiangwei, W., Qijun, C.: A review on consensus algorithm of blockchain. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2017, vol. 2017, pp. 2567–2572, doi: https://doi.org/10.1109/SMC.2017.8123011
Wang, H., Zheng, Z., Xie, S., Dai, H.N., Chen, X.: Blockchain challenges and opportunities: a survey. Int. J. Web Grid Serv. 14(4), 352 (2018). https://doi.org/10.1504/ijwgs.2018.10016848
Chen, J., Micali, S.: Algorand: A secure and efficient distributed ledger. Theor. Comput. Sci. 777, 155–183 (2019). https://doi.org/10.1016/j.tcs.2019.02.001
Buterin, V. et al. Combining GHOST and Casper. arxiv.org, 2020, [Online]. Available: http://arxiv.org/abs/2003.03052.
Saleh, F.: Blockchain without waste: proof-of-stake. SSRN Electron. J. (2018). https://doi.org/10.2139/ssrn.3183935
Zheng, Z., Xie, S., Dai, H., Chen, X., Wang, H.: An overview of blockchain technology: architecture, consensus, and future trends. In: Proceedings - 2017 IEEE 6th International Congress on Big Data, BigData Congress 2017, pp. 557–564, (2017) doi: https://doi.org/10.1109/BigDataCongress.2017.85.
Larimer, D.: Delegated proof-of-stake consensus. (2018)
Corso, A.: Performance analysis of proof-of-elapsed-time (poet) consensus in the sawtooth blockchain framework. University of Oregon, (2019).
Nguyen, G.T., Kim, K.: A survey about consensus algorithms used in Blockchain. J. Inf. Process. Syst. 14(1), 101–128 (2018). https://doi.org/10.3745/JIPS.01.0024
Sukhwani, H., Martínez, J.M., Chang, X., Trivedi, K.S., Rindos, A.: Performance modeling of PBFT consensus process for permissioned blockchain network (hyperledger fabric). In: Proceedings of the IEEE symposium on reliable distributed systems, vol. 2017, pp. 253–255, doi: https://doi.org/10.1109/SRDS.2017.36
Androulaki E. et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the 13th EuroSys Conference, EuroSys 2018, vol. 2018 (2018) doi: https://doi.org/10.1145/3190508.3190538
Blockgeeks.: What is hyperledger? The most comprehensive video ever!. www.https://blockgeeks.com/guides, (2018)
Destefanis, G., Marchesi, M., Ortu, M., Tonelli, R., Bracciali, A., Hierons, R.: Smart contracts vulnerabilities: a call for blockchain software engineering?. In: 2018 IEEE 1st International Workshop on Blockchain Oriented Software Engineering, IWBOSE 2018 - Proceedings, vol. 2018 pp. 19–25, (2018) doi: https://doi.org/10.1109/IWBOSE.2018.8327567
Wang S, Ouyang L, Yuan Y, Ni X, Han X, Wang FY (2019) Blockchain-enabled smart contracts: architecture, applications, and future trends. IEEE Trans. Syst. Man, Cybern. Syst. 49(11), 2266–2277
Caldarelli, G.: Understanding the blockchain oracle problem: a call for action. Information (Switzerland) 11(11), 1–19 (2020). https://doi.org/10.3390/info11110509
Homoliak, I., Venugopalan, S., Hum, Q., Reijsbergen, D., Schumi, R., Szalachowski, P.: The security reference architecture for Blockchains: towards a standardized model for studying vulnerabilities, threats, and defenses. (2019)
Praitheeshan, P., Pan, L., Yu, J., Liu, J., Doss, R., Security analysis methods on ethereum smart contract vulnerabilities: a survey. (2019)
Ferrag, M.A., Derdour, M., Mukherjee, M., Derhab, A., Maglaras, L., Janicke, H.: Blockchain technologies for the internet of things: research issues and challenges. IEEE Internet Things J. 6(2), 2188–2204 (2019). https://doi.org/10.1109/JIOT.2018.2882794
Mayer, H.: ECDSA security in bitcoin and ethereum: a research survey. Blog.Coinfabrik, pp. 1–10, (2016)
Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: routing attacks on cryptocurrencies. In: Proceedings—IEEE Symposium on Security and Privacy, pp. 375–392, (2017). doi: https://doi.org/10.1109/SP.2017.29
Sayeed, S., Marco-Gisbert, H.: Assessing blockchain consensus and security mechanisms against the 51% attack. Appl. Sci. 9(9), 1788 (2019). https://doi.org/10.3390/app9091788
Tosh, D.K., Shetty, S., Liang, X., Kamhoua, C.A., Kwiat, K.A., Njilla, L.: Security implications of Blockchain cloud with analysis of block withholding attack. In: Proceedings—2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGRID 2017, pp. 458–467, (2017). doi: https://doi.org/10.1109/CCGRID.2017.111
Li, X., Jiang, P., Chen, T., Luo, X., Wen, Q.: A survey on the security of blockchain systems. Futur. Gener. Comput. Syst. 107, 841–853 (2020). https://doi.org/10.1016/j.future.2017.08.020
Ye, C., Li, G., Cai, H., Gu, Y., Fukuda, A.: Analysis of security in blockchain: Case study in 51%-attack detecting. In Proceedings-2018 5th International Conference on Dependable Systems and Their Applications, DSA 2018, pp. 15–24, (2018). doi: https://doi.org/10.1109/DSA.2018.00015
Underwood, S.: Blockchain beyond bitcoin. Commun. ACM 59(11), 15–17 (2016). https://doi.org/10.1145/2994581
Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on Bitcoin’s peer-to-peer network. In: Proceedings of the 24th USENIX Security Symposium, pp. 129–144, (2015)
Kurose, J.F., Ross, K.W.: Computer networking: a top-down approach featuring the internet, 4th ed. (2008)
Del Castillo, M.: The DAO attacked: code issue leads to $60 million ether theft. CoinDesk, (2016)
Signorini, M., Pontecorvi, M., Kanoun, W., Di Pietro, R.: BAD: Blockchain anomaly detection. (2018)
Alharby, M., Aldweesh, A., Van Moorsel, A.: Blockchain-based smart contracts: a systematic mapping study of academic research. In: International Conference on Cloud Computing, Big Data and Blockchain, ICCBB 2018, (2018) doi: https://doi.org/10.1109/ICCBB.2018.8756390
Musch, M., Wressnegger, C., Johns, V., Rieck, K., Web-based Cryptojacking in the Wild. (2018)
Boireau, O.: Securing the blockchain against hackers. Netw. Secur. 2018(1), 8–11 (2018). https://doi.org/10.1016/S1353-4858(18)30006-0
Luu, L., Chu, D.H. Olickel, H., Saxena, P., Hobor, A.: Making smart contracts smarter. In: Proceedings of the ACM Conference on Computer and Communications Security, vol. 24–pp. 254–269 (2016) doi: https://doi.org/10.1145/2976749.2978309
Luu, L., Velner, Y., Teutsch, J., Saxena, P., SmartPool: practical decentralized pooled mining. In: Proceedings of the 26th USENIX Security Symposium, pp. 1409–1426 (2017)
Liao, H.J., Richard Lin, C.H., Lin, Y.C., Tung, K.Y.: Intrusion detection system: a comprehensive review. J. Netw. Comput. Appl. 36(1), 16–24 (2013). https://doi.org/10.1016/j.jnca.2012.09.004
Mukherjee, B., Heberlein, L., Levitt, K.N.: Network intrusion detection. IEEE Netw. 8(3), 26–41 (2002). https://doi.org/10.1109/65.283931
Yeung, D.Y., Ding, Y.: Host-based intrusion detection using dynamic and static behavioral models. Pattern Recognit. 36(1), 229–243 (2003). https://doi.org/10.1016/S0031-3203(02)00026-2
Alrawashdeh, H., Purdy, C.: Toward an online anomaly intrusion detection system based on deep learning. In: Proceedings - 2016 15th IEEE International Conference on Machine Learning and Applications, ICMLA 2016, 2017, doi: https://doi.org/10.1109/ICMLA.2016.167
Berthier, P., Sanders, W.H., Specification-based intrusion detection for advanced metering infrastructures. In: Proceedings of IEEE Pacific Rim International Symposium on Dependable Computing, PRDC, pp. 184–193, (2011) doi: https://doi.org/10.1109/PRDC.2011.30
Zhou, C.V., Leckie, C., Karunasekera, S.: A survey of coordinated attacks and collaborative intrusion detection. Comput. Secur. 29(1), 124–140 (2010). https://doi.org/10.1016/j.cose.2009.06.008
Kim,S., Kim, B., Kim, H.J.: Intrusion detection and mitigation system using blockchain analysis for bitcoin exchange. In: ACM International Conference Proceeding Series, pp. 40–44, (2018) doi: https://doi.org/10.1145/3291064.3291075
Meng, W., Li, W., Zhu, L.: Enhancing medical smartphone networks via Blockchain-Based trust management against insider attacks. IEEE Trans. Eng. Manag. (2019). https://doi.org/10.1109/TEM.2019.2921736
Hu, B., Zhou, C., Tian, Y.-C., Hu, X., Junping, X.: Decentralized consensus decision-making for cybersecurity protection in multimicrogrid systems. In: Systems, Man, and Cybernetics., pp. 1–12, (2020), doi: https://doi.org/10.1109/tsmc.2020.3019272
Lin, I.C., Liao, T.C.: A survey of blockchain security issues and challenges. Int. J. Netw. Secur. 19(5), 653–659 (2017). https://doi.org/10.6633/IJNS.201709.19(5).01
Signorini, M., Pontecorvi, M., Kanoun, W., Di Pietro, R.: Advise: anomaly detection tool for blockchain systems. In: Proceedings - 2018 IEEE World Congress on Services, SERVICES 2018, pp. 67–68, (2018) doi: https://doi.org/10.1109/SERVICES.2018.00046
Hubballi, N., Suryanarayanan, V.: False alarm minimization techniques in signature-based intrusion detection systems: a survey. Comput. Commun. 49, 1–17 (2014). https://doi.org/10.1016/j.comcom.2014.04.012
Shone, N., Ngoc, T.N., Phai, V.D., Shi, Q.: A deep learning approach to network intrusion detection. IEEE Trans. Emerg. Top. Comput. Intell. (2018). https://doi.org/10.1109/TETCI.2017.2772792
Yin, C., Zhu, Y., Fei, J., He, X.: A Deep learning approach for intrusion detection using recurrent neural networks. IEEE Access (2017). https://doi.org/10.1109/ACCESS.2017.2762418
Niyaz, Q., Sun, W., Javaid, A.Y., Alam, M.: A deep learning approach for network intrusion detection system. In: EAI International Conference on Bio-inspired Information and Communications Technologies (BICT), (2015). doi: https://doi.org/10.4108/eai.3-12-2015.2262516
Van, N.T., Thinh, T.N., Sach, L.T., An anomaly-based network intrusion detection system using Deep learning. In: Proceedings - 2017 international conference on system science and engineering, ICSSE 2017, (2017). doi: https://doi.org/10.1109/ICSSE.2017.8030867.
Xin, Y., et al.: Machine learning and deep learning methods for cybersecurity. IEEE Access (2018). https://doi.org/10.1109/ACCESS.2018.2836950
Otoum, S., Kantarci, B., Mouftah, H.T.: On the feasibility of deep learning in sensor network intrusion detection. IEEE Netw. Lett. (2019). https://doi.org/10.1109/lnet.2019.2901792
Thamilarasu, G., Chawla, S.: Towards deep-learning-driven intrusion detection for the internet of things. Sensors (Switzerland) (2019). https://doi.org/10.3390/s19091977
Loukas, G., Vuong, T., Heartfield, R., Sakellari, G., Yoon, Y., Gan, D.: Cloud-based cyber-physical intrusion detection for vehicles using deep learning. IEEE Access (2017). https://doi.org/10.1109/ACCESS.2017.2782159
Zhang, J., Li, F., Zhang, H., Li, R., Li, Y.: Intrusion detection system using deep learning for in-vehicle security. Ad Hoc Netw. (2019). https://doi.org/10.1016/j.adhoc.2019.101974
Abusitta, A., Bellaiche, M., Dagenais, M., Halabi, T.: A deep learning approach for proactive multi-cloud cooperative intrusion detection system. Futur. Gener. Comput. Syst. (2019). https://doi.org/10.1016/j.future.2019.03.043
Tug, S., Meng, W., Wang, Y.: CBSigIDS: Towards Collaborative Blockchained Signature-Based Intrusion Detection. In: Proceedings—IEEE 2018 International Congress on Cybermatics: 2018 IEEE Conferences on Internet of Things, Green Computing and Communications, Cyber, Physical and Social Computing, Smart Data, Blockchain, Computer and Information Technology, iThings/Gree, pp. 1228–1235, (2018) https://doi.org/10.1109/Cybermatics_2018.2018.00217
Laufenberg, D., Li, L., Shahriar, H., Han, M.: An architecture for blockchain-enabled collaborative signature-based intrusion detection system. In: SIGITE 2019 - Proceedings of the 20th Annual Conference on Information Technology Education, p. 169, (2019). doi: https://doi.org/10.1145/3349266.3351389
Uppuluri, P., Sekar, R.: Experiences with specification-based intrusion detection. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) vol. 2212, pp. 172–189, (2015), doi: https://doi.org/10.1007/3-540-45474-8_11
Ko, C., Ruschitzka, M., Levitt, K.: Execution monitoring of security-critical programs in distributed systems: a specification-based approach. In: Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy, (1997), pp. 175–187, doi: https://doi.org/10.1109/secpri.1997.601332
Lin, H., Slagell, A., Di Martino, C., Kalbarczyk, Z., Iyer, R.K.: Adapting bro into SCADA: Building a specification-based intrusion detection system for the DNP3 protocol. In: ACM International Conference Proceeding Series, p. 1, (2013) doi: https://doi.org/10.1145/2459976.2459982
Cheung, S., Skinner, K.: Using model-based intrusion detection for SCADA networks. Sci. Technol. 329(7461), 1–12 (2006)
Hadeli, H., Schierholz, R., Braendle, M., Tuduce, C.: Leveraging determinism in industrial control systems for advanced anomaly detection and reliable security configuration. In: ETFA 2009–2009 IEEE Conference on Emerging Technologies and Factory Automation, (2009), doi: https://doi.org/10.1109/ETFA.2009.5347134
Gill, R., Smith, J., Clark, A.: Specification-based intrusion detection in WLANs. In: Proceedings - Annual Computer Security Applications Conference, ACSAC, pp. 141–150, (2006) doi: https://doi.org/10.1109/ACSAC.2006.48.
Schultz, E.E.: A framework for understanding and predicting insider attacks. Comput. Secur. 21(6), 526–531 (2002). https://doi.org/10.1016/S0167-4048(02)01009-X
Kolokotronis, N., Brotsis, S., Germanos, G., Vassilakis, C., Shiaeles, S.: On blockchain architectures for trust-based collaborative intrusion detection. In: Proceedings - 2019 IEEE World Congress on Services, SERVICES 2019, (2019), doi: https://doi.org/10.1109/SERVICES.2019.00019
Duma, C., Karresand, M., Shahmehri, N., Caronni, G.: A trust-aware, P2P-based overlay for intrusion detection. In: Proceedings - International Workshop on Database and Expert Systems Applications, DEXA, pp. 692–697, (2006). doi: https://doi.org/10.1109/DEXA.2006.21
Ambili, K.N., Jose, J.: Trust based intrusion detection system to detect insider attacks in IoT systems. Lecture Notes Electr. Eng. 621, 631–638 (2020). https://doi.org/10.1007/978-981-15-1465-4_62
Imran, M., Hayawi, K., Kaosar, M., Mathew, S.S., Masud, M.M.: Blockchain-based secure CIDS operation. In: 2021 5th Cyber Security in Networking Conference (CSNet), IEEE, (2021), pp. 103–106, doi: https://doi.org/10.1109/CSNet52717.2021.9614650
Raje, S., Vaderia, S., Wilson, N., Panigrahi, R.: Decentralised firewall for malware detection. In: International Conference on Advances in Computing, Communication and Control 2017, ICAC3 2017, vol. 2018, pp. 1–5, (2018) doi: https://doi.org/10.1109/ICAC3.2017.8318755
Alkadi, O., Moustafa, N., Turnbull, B.: A review of intrusion detection and blockchain applications in the cloud: approaches, challenges and solutions. IEEE Access 8, 104893–104917 (2020). https://doi.org/10.1109/ACCESS.2020.2999715
Banerjee, M., Lee, J., Chen, Q., Choo, K.K.R.: Blockchain-based security layer for identification and isolation of malicious things in IoT: a conceptual design. In: International Conference on Computer Communications and Networks (ICCCN). vol. 2018 (2018), doi: https://doi.org/10.1109/ICCCN.2018.8487447
Ide, T.: Collaborative anomaly detection on blockchain from noisy sensor data. In: IEEE International Conference on Data Mining Workshops, ICDMW, vol. 2018, pp. 120–127, (2019) doi: https://doi.org/10.1109/ICDMW.2018.00024
Patel, A., Alhussian, H., Pedersen, J.M., Bounabat, B., Júnior, J.C., Katsikas, S.: A nifty collaborative intrusion detection and prevention architecture for Smart Grid ecosystems. Comput. Secur. 64, 92–109 (2017). https://doi.org/10.1016/J.COSE.2016.07.002
Hu, B., Zhou,C., Tian, Y.C., Qin, Y., Junping, X.: A collaborative intrusion detection approach using blockchain for multimicrogrid systems. IEEE Transactions on Systems, Man, and Cybernetics. (2019), doi: https://doi.org/10.1109/TSMC.2019.2911548.
Derhab, A., et al.: Blockchain and random subspace learning-based IDS for SDN-enabled industrial IoT security. Sensors 19(14), 3119 (2019). https://doi.org/10.3390/S19143119
Fan, A.R., Dıaz Lopez, D., Felix Gomez M.: B SIEM-IoT: a blockchain-based and distributed SIEM for the Internet of Things. In: Springer, Vol. 11605, pp. 1–14, (2019)
Husain, S.M.A.: “US20180211043A1 - Blockchain Based Security for End Points - Google Patents,” (2018). https://patents.google.com/patent/US20180211043A1/en. Accessed March 25, 2022
Ujjan, R.M.A., Pervez,Z., Dahal, K.: Snort based collaborative intrusion detection system using blockchain in SDN. In: International Conference on Software, Knowledge, Information Management and Applications, (2019). doi: https://doi.org/10.1109/SKIMA47702.2019.8982413.
Meng, W., Li, W., Yang, L.T., Li, P.: Enhancing challenge-based collaborative intrusion detection networks against insider attacks using blockchain. Int. J. Inf. Secur. 19(3), 279–290 (2020). https://doi.org/10.1007/S10207-019-00462-X/FIGURES/8
Li, W., Wang, Y., Li, J., Au, M.H.: Toward a blockchain-based framework for challenge-based collaborative intrusion detection. Int. J. Inf. Secur. 20(2), 127–139 (2021). https://doi.org/10.1007/S10207-020-00488-6/FIGURES/8
Fung, C.J., Baysal, O., Zhang, J., Aib, I., Boutaba, R.: Trust Management for Host-Based Collaborative Intrusion Detection. Lecture Notes in Computer Science (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5273 LNCS, pp. 109–122, (2008). doi: https://doi.org/10.1007/978-3-540-87353-2_9.
Bao, F., Chen, I.R., Chang, M.J., Cho, J.H.: Hierarchical trust management for wireless sensor networks and its applications to trust-based routing and intrusion detection. IEEE Trans. Netw. Serv. Manag. 9(2), 169–183 (2012). https://doi.org/10.1109/TCOMM.2012.031912.110179
Liang, X., Shetty, S., Tosh, D., Kamhoua, C., Kwiat, K., Njilla, L.: ProvChain: a blockchain-based data provenance architecture in cloud environment with enhanced privacy and availability. In: Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. CCGRID, pp. 468–477, (2017). doi: https://doi.org/10.1109/CCGRID.2017.8
Liu, Q., Hagenmeyer, V., Keller, H.B.: A review of rule learning-based intrusion detection systems and their prospects in smart grids. IEEE Access 9, 57542–57564 (2021). https://doi.org/10.1109/ACCESS.2021.3071263
Mitchell, R., Chen, I.R.: Behavior rule specification-based intrusion detection for safety critical medical cyber physical systems. IEEE Trans. Dependable Secur. Comput. 12(1), 16–30 (2015). https://doi.org/10.1109/TDSC.2014.2312327
Sekar, R. et al.: Specification-based anomaly detection: a new approach for detecting network intrusions. In: 9th ACM Conference on Computer and Communications Security-CCS ’02, (2002). doi: https://doi.org/10.1145/586110.
Hajiheidari, S., Wakil, K., Badri, M., Navimipour, N.J.: Intrusion detection systems in the Internet of things: a comprehensive investigation. Comput. Netw. 160, 165–191 (2019). https://doi.org/10.1016/J.COMNET.2019.05.014
Di Pietro, R., Salleras, X., Signorini, M., Waisbard, E.: A blockchain-based trust system for the internet of things. In: Proceedings of ACM Symposium on Access Control Models and Technologies, SACMAT, (2018). doi: https://doi.org/10.1145/3205977.3205993
Funding
The funding of this project was provided by Zayed University, UAE; Cluster Grant: R20140.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no competing interests to declare that are relevant to the content of this article and agree to the publishing of its content. All authors certify that they have sufficient participation in this work including the conceptualization, research, design, analysis, writing, and redaction of the manuscript.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mathew, S.S., Hayawi, K., Dawit, N.A. et al. Integration of blockchain and collaborative intrusion detection for secure data transactions in industrial IoT: a survey. Cluster Comput 25, 4129–4149 (2022). https://doi.org/10.1007/s10586-022-03645-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-022-03645-9