Skip to main content

Advertisement

Log in

Clustering for smart cities in the internet of things: a review

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Nowadays, internet of things (IoT) applications, especially in smart cities, are fast developing. Clustering is a promising solution for handling IoT issues such as energy efficiency, scalability, robustness, mobility, load balancing, and so on. The clustering method, which can be applied in IoT, groups sensor nodes into clusters with one node operating as the cluster head. This paper intends to determine the usage of clustering in IoT as a case study for smart cities. Furthermore, this study discusses clustering algorithms on IoT, open issues, and future challenges of clustering in the context of the smart city, and also existing research papers selected by the systematic literature review technique published between 2017 and 2021. Also, we provide a technical taxonomy for clustering categorization in IoT, which includes algorithm, architecture, and application. According to the statistical analysis of 51 chosen research articles in the domain of clustering in IoT, the results show that the number of clusters has a high percentage of 24%, the energy factor has 23%, the execution time factor has 18%, the accuracy has 14%, the delay has 9%, the lifetime has 6%, and throughput has 6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Balakrishna, S., Thirumaran, M.: Semantics and clustering techniques for IoT sensor data analysis: a comprehensive survey. Princ. Internet Things (IoT) Ecosyst. 2020, 103–125 (2020)

    Google Scholar 

  2. Bangui, H., Ge, M., Buhnova, B.: A research roadmap of big data clustering algorithms for future internet of things. Int. J. Organ. Collect. Intell. (IJOCI) 9(2), 16–30 (2019)

    Article  Google Scholar 

  3. Mahdavinejad, M.S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., Sheth, A.P.: Machine learning for internet of things data analysis: a survey. Digit. Commun. Netw. 4(3), 161–175 (2018)

    Article  Google Scholar 

  4. Kousis, A., Tjortjis, C.: Data mining algorithms for smart cities: a bibliometric analysis. Algorithms 14(8), 242 (2021)

    Article  Google Scholar 

  5. Tharwat, M., Khattab, A.: Clustering techniques for smart cities: an artificial intelligence perspective. In: Smart Cities: A Data Analytics Perspective, pp. 113–134. Springer, Cham (2021)

    Chapter  Google Scholar 

  6. Bangui, H., Ge, M. and Buhnova, B.: Exploring big data clustering algorithms for internet of things applications. In: IoTBDS. pp. 269–276, 2018

  7. Mahyastuty, V.W., Hendrawan, H., Iskandar, I. and Arifianto, M.S.: Survey of clustering techniques in internet of things architecture. In: 2020 14th International Conference on Telecommunication Systems, Services, and Applications TSSA, pp. 1–4. IEEE, 2020

  8. Belhadi, A., Djenouri, Y., Nørvåg, K., Ramampiaro, H., Masseglia, F., Lin, J.-W.: Space–time series clustering: algorithms, taxonomy, and case study on urban smart cities. Eng. Appl. Artif. Intell. 95, 103857 (2020)

    Article  Google Scholar 

  9. Sowmya, R., Suneetha, K. R.: Data mining with big data. In: 2017 11th International Conference on Intelligent Systems and Control (ISCO), pp. 246–250. IEEE, 2017

  10. Luckey, D., Fritz, H., Legatiuk, D., Dragos, K., Smarsly, K.: Artificial intelligence techniques for smart city applications. In: International Conference on Computing in Civil and Building Engineering, pp. 3–15. Springer, Cham (2020)

    Google Scholar 

  11. Lytras, M.D., Visvizi, A., Sarirete, A.: Clustering smart city services: Perceptions, expectations, responses. Sustainability 11(6), 1669 (2019)

    Article  Google Scholar 

  12. Sholla, S., Kaur, S., Begh, G.R., Mir, R.N., Chishti, M.A.: Clustering internet of things: a review. J. Sci. Technol. 3(2), 21–27 (2017)

    Google Scholar 

  13. Torabi, M., Hashemi, S., Saybani, M.R., Shamshirband, S., Mosavi, A.: A Hybrid clustering and classification technique for forecasting short-term energy consumption. Environ. Prog. Sustain. Energy 38(1), 66–76 (2019)

    Article  Google Scholar 

  14. Taherei Ghazvinei, P., Hassanpour Darvishi, H., Mosavi, A., Yusof, K.B.W., Alizamir, M., Shamshirband, S., Chau, K.W.: Sugarcane growth prediction based on meteorological parameters using extreme learning machine and artificial neural network. Eng. Appl. Comput. Fluid Mech. 12(1), 738–749 (2018)

    Google Scholar 

  15. Nabipour, M., Nayyeri, P., Jabani, H., Shahab, S., Mosavi, A.: Predicting stock market trends using machine learning and deep learning algorithms via continuous and binary data; a comparative analysis. IEEE Access 8, 150199–150212 (2020)

    Article  Google Scholar 

  16. Bonaccorso, G.: Machine Learning Algorithms. Packt Publishing Ltd, Birmingham (2017)

    Google Scholar 

  17. Puliafito, A., Tricomi, G., Zafeiropoulos, A., Papavassiliou, S.: Smart cities of the future as cyber physical systems: challenges and enabling technologies. Sensors 21(10), 3349 (2021)

    Article  Google Scholar 

  18. Bernard, A.: Solving interoperability and performance challenges over heterogeneous IoT networks: DNS-based solutions. PhD diss., Institut polytechnique de Paris, 2021

  19. Srinivas, K. G., Hosahalli, D.: Evolutionary computing assisted K-Means clustering based mapreduce distributed computing environment for IoT-driven smart city. In: 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), pp. 192–200. IEEE, 2021

  20. Alazab, M., Lakshmanna, K., Reddy, T., Pham, Q.-V., Maddikunta, P.K.R.: Multi-objective cluster head selection using fitness averaged rider optimization algorithm for IoT networks in smart cities. Sustain. Energy Technol. Assess. 43, 100973 (2021)

    Google Scholar 

  21. Qin, Z., Xu, F., Xie, Y., Zhang, Z., Li, G.: An improved top-K algorithm for edge servers deployment in smart city. Trans. Emerg. Telecommun. Technol. 32, e4249 (2021)

    Google Scholar 

  22. Liang, T.: Cascaded fault diagnosis based on weighted computer network in smart city environment considering focusing fuzzy clustering algorithm. In: 2019 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), pp. 178–182. IEEE, 2019

  23. Ghoneim, O.A.: Traffic jams detection and congestion avoidance in smart city using parallel K-Means clustering algorithm. In: Proceedings of International Conference on Cognition and Recognition, pp. 21–30. Springer, Singapore (2018)

    Google Scholar 

  24. Feng, X., Zhang, J., Ren, C., Guan, T.: An unequal clustering algorithm concerned with time-delay for internet of things. IEEE Access 6, 33895–33909 (2018)

    Article  Google Scholar 

  25. Mydhili, S.K., Periyanayagi, S., Baskar, S., Mohamed Shakeel, P., Hariharan, P.R.: Machine learning based multi scale parallel K-means++ clustering for cloud assisted internet of things. Peer-to-Peer Netw. Appl. 13(6), 2023–2035 (2020)

    Article  Google Scholar 

  26. Han, G., Wu, J., Wang, H., Guizani, M., Ansere, J.A., Zhang, W.: A multicharger cooperative energy provision algorithm based on density clustering in the industrial internet of things. IEEE Internet Things J. 6(5), 9165–9174 (2019)

    Article  Google Scholar 

  27. Wang, Z., Qin, X., Liu, B.: An energy-efficient clustering routing algorithm for WSN-assisted IoT. In: 2018 IEEE wireless communications and networking conference (WCNC), pp. 1–6. IEEE, 2018

  28. Azri, S., Ujang, U., Abdul Rahman, A.: Dendrogram clustering for 3D data analytics in smart city. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 42, 247–253 (2018)

    Article  Google Scholar 

  29. Baniata, M., Hong, J.: Energy-efficient unequal chain length clustering for wireless sensor networks in smart cities. Wirel. Commun. Mob. Comput. (2017). https://doi.org/10.1155/2017/5790161

    Article  Google Scholar 

  30. Azri, S., Ujang, U., Abdul Rahman, A.: 3D geo-clustering for wireless sensor network in smart city. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 42, 11–16 (2019)

    Article  Google Scholar 

  31. Bindhu, V., Ranganathan, G.: Hyperspectral image processing in internet of things model using clustering algorithm. J. ISMAC 3(02), 163–175 (2021)

    Article  Google Scholar 

  32. Fouladlou, M., Khademzadeh, A.: An energy efficient clustering algorithm for wireless sensor devices in internet of things. In: 2017 Artificial Intelligence and Robotics (IRANOPEN), pp. 39–44. IEEE, 2017

  33. Xu, Y., Yue, Z., Lv, L.: Clustering routing algorithm and simulation of internet of things perception layer based on energy balance. IEEE Access 7, 145667–145676 (2019)

    Article  Google Scholar 

  34. Kumar, S.. Raza, Z.: A K-means clustering based message forwarding model for internet of things (IoT). In: 2018 8th International Conference on Cloud Computing, Data Science & Engineering (Confluence), pp. 604–609. IEEE, 2018

  35. Khan, F.A., Noor, R.M., Kiah, M.L., Ahmedy, I., Mohd Yamani Idna, I., Soon, T.K., Ahmad, M.: Performance evaluation and validation of QCM (query control mechanism) for QoS-enabled layered-based clustering for reactive flooding in the internet of things. Sensors 20(1), 283 (2020)

    Article  Google Scholar 

  36. Gao, H., Yueshen, Xu., Yin, Y., Zhang, W., Li, R., Wang, X.: Context-aware QoS prediction with neural collaborative filtering for internet-of-things services. IEEE Internet Things J. 7(5), 4532–4542 (2019)

    Article  Google Scholar 

  37. Sekar, E.V., Anuradha, J., Arya, A., Balusamy, B., Chang, V.: A framework for smart traffic management using hybrid clustering techniques. Clust. Comput. 21(1), 347–362 (2018)

    Article  Google Scholar 

  38. Mohapatra, A.D., Sahoo, M.N., Sangaiah, A.K.: Distributed fault diagnosis with dynamic cluster-head and energy efficient dissemination model for smart city. Sustain. Cities Soc. 43, 624–634 (2018)

    Article  Google Scholar 

  39. Bharti, M., Jindal, H.: Optimized clustering-based discovery framework on internet of things. J. Supercomput. 77, 1739–1778 (2021)

    Article  Google Scholar 

  40. Shuja, J., Humayun, M.A., Alasmary, W., Sinky, H., Alanazi, E., Khan, M.K.: Resource efficient geo-textual hierarchical clustering framework for social IoT applications. IEEE Sens. J. 21, 25144 (2021)

    Article  Google Scholar 

  41. Azevedo, R.D., Machado, G.R., Goldschmidt, R.R., Choren, R.: A reduced network traffic method for IoT data clustering. ACM Trans. Knowl. Discov. Data 15(1), 1–23 (2020)

    Article  Google Scholar 

  42. Kumar, J.S., Zaveri, M.A.: CCstering approaches for pragmatic two-layer IoT architecture. Wirel. Commun. Mob. Comput. (2018). https://doi.org/10.1155/2018/8739203

    Article  Google Scholar 

  43. Jabeur, N., Yasar, A.-H., Shakshuki, E., Haddad, H.: Toward a bio-inspired adaptive spatial clustering approach for IoT applications. Future Gener. Comput. Syst. 107, 736–744 (2020)

    Article  Google Scholar 

  44. Shukla, A., Tripathi, S.: A multi-tier based clustering framework for scalable and energy efficient WSN-assisted IoT network. Wirel. Netw. 26(1), 23 (2020)

    Google Scholar 

  45. Effah, E., Thiare, O., Wyglinski, A.: Energy-efficient multihop routing framework for cluster-based agricultural internet of things (CA-IoT). In: 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), pp. 1–5. IEEE, 2020

  46. Jiang, Y., Bi, A., Xia, K., Xue, J., Qian, P.: Exemplar-based data stream clustering toward internet of things. J. Supercomput. 76(4), 2929–2957 (2020)

    Article  Google Scholar 

  47. Sharif, A., Li, J.P., Saleem, M.A., Saba, T., Kumar, R.: Efficient hybrid clustering scheme for data delivery using internet of things enabled vehicular ad hoc networks in smart city traffic congestion. J. Internet Technol. 21(1), 149–157 (2020)

    Google Scholar 

  48. Yuan, Z., Wang, W., Fan, X.: Back propagation neural network clustering architecture for stability enhancement and harmonic suppression in wind turbines for smart cities. Comput. Electr. Eng. 74, 105–116 (2019)

    Article  Google Scholar 

  49. Qureshi, K.N., Ahmad, A., Piccialli, F., Casolla, G., Jeon, G.: Nature-inspired algorithm-based secure data dissemination framework for smart city networks. Neural Comput. Appl. 33(17), 10637–10656 (2021)

    Article  Google Scholar 

  50. Yin, H., Xu, J., Luo, Z., Xu, Y., He, S., Xiong, T.: Development and design of intelligent gymnasium system based on K-Means clustering algorithm under the internet of things. In: International conference on Big Data Analytics for Cyber-Physical-Systems, pp. 1568–1573. Springer, Singapore (2020)

    Google Scholar 

  51. Yang, J., Guo, B., Wang, Z., Ma, Y.: Hierarchical prediction based on network-representation-learning-enhanced clustering for bike-sharing system in smart city. IEEE Internet Things J. 8(8), 6416–6424 (2020)

    Article  Google Scholar 

  52. Famila, S., Jawahar, A., Sariga, A., Shankar, K.: Improved artificial bee colony optimization based clustering algorithm for SMART sensor environments. Peer-to-Peer Netw. Appl. 13(4), 1071–1079 (2020)

    Article  Google Scholar 

  53. Yang, J., Han, Y., Wang, Y., Jiang, B., Lv, Z., Song, H.: Optimization of real-time traffic network assignment based on IoT data using DBN and clustering model in smart city. Future Gener. Comput. Syst. 108, 976–986 (2020)

    Article  Google Scholar 

  54. Muntean, M.V.: Car park occupancy rates forecasting based on cluster analysis and kNN in smart cities. In: 2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), pp. 1–4. IEEE, 2019

  55. Qureshi, B., Kawlaq, K., Koubaa, A., Saeed, B. and Younis, M.: A commodity SBC-edge cluster for smart cities. In: 2019 2nd International Conference on Computer Applications & Information Security (ICCAIS), pp. 1–6. IEEE, 2019

  56. Zou, X., Cao, J., Sun, W., Guo, Q., Wen, T.: Flow data processing paradigm and its application in smart city using a cluster analysis approach. Clust. Comput. 22(2), 435–444 (2019)

    Article  Google Scholar 

  57. Logesh, R., Subramaniyaswamy, V., Vijayakumar, V., Gao, X.Z., Indragandhi, V.: A hybrid quantum-induced swarm intelligence clustering for the urban trip recommendation in smart city. Future Gener. Comput. Syst. 83, 653–673 (2018)

    Article  Google Scholar 

  58. Lücken, V., Voss, N., Schreier, J., Baag, T., Gehring, M., Raschen, M., Lanius, C., Leupers, R., Ascheid, G.: Density-based statistical clustering: enabling sidefire ultrasonic traffic sensing in smart cities. J. Adv. Transp. (2018). https://doi.org/10.1155/2018/9317291

    Article  Google Scholar 

  59. Tabatabai, S., Mohammed, I., Al-Fuqaha, A. and Salahuddin, M.A.: Managing a cluster of IoT brokers in support of smart city applications. In: 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–6. IEEE, 2017

  60. Zhang, Q., Zhu, C., Yang, L.T., Chen, Z., Zhao, L., Li, P.: An incremental CFS algorithm for clustering large data in industrial internet of things. IEEE Trans. Ind. Inform. 13(3), 1193–1201 (2017)

    Article  Google Scholar 

  61. Guo, X., Lin, H., Yulei, Wu., Peng, M.: A new data clustering strategy for enhancing mutual privacy in healthcare IoT systems. Future. Gener. Comput. Syst. 113, 407–417 (2020)

    Article  Google Scholar 

  62. Chithaluru, P., Al-Turjman, F., Kumar, M., Stephan, T.: I-AREOR: an energy-balanced clustering protocol for implementing green IoT in smart cities. Sustain. Cities Soc. 61, 102254 (2020)

    Article  Google Scholar 

  63. Xu, L., O’Hare, G.M., Collier, R.: A smart and balanced energy-efficient multihop clustering algorithm (smart-beem) for mimo iot systems in future networks. Sensors 17(7), 1574 (2017)

    Article  Google Scholar 

  64. Rani, S., Ahmed, S.H., Rastogi, R.: Dynamic clustering approach based on wireless sensor networks genetic algorithm for IoT applications. Wirel. Netw. 26(4), 2307–2316 (2020)

    Article  Google Scholar 

  65. Bellaouar, S., Guerroumi, M., Moussaoui, S.: QoS based clustering for vehicular networks in smart cities. In: International Conference on Dependability in Sensor, Cloud, and Big Data Systems and Applications, pp. 67–79. Springer, Singapore (2019)

    Chapter  Google Scholar 

  66. Darabkh, K.A., Wafaa, K.K., Ala’F, K.: LiM-AHP-GC: life time maximizing based on analytical hierarchal process and genetic clustering protocol for the internet of things environment. Comput. Netw. 176, 107257 (2020)

    Article  Google Scholar 

  67. Zheng, M., Chen, Si., Liang, W., Song, M.: NSAC: a novel clustering protocol in cognitive radio sensor networks for Internet of Things. IEEE Internet Things J. 6(3), 5864–5865 (2019)

    Article  Google Scholar 

  68. Tripathi, A.K., Sharma, K., Bala, M., Kumar, A., Menon, V.G., Bashir, A.K.: A parallel military-dog-based algorithm for clustering big data in cognitive industrial internet of things. IEEE Trans. Ind. Inform. 17(3), 2134–2142 (2020)

    Article  Google Scholar 

  69. Zhang, J., Feng, X., Liu, Z.: A grid-based clustering algorithm via load analysis for industrial Internet of things. IEEE Access 6, 13117–13128 (2018)

    Article  Google Scholar 

  70. Ja’afreh, M.A., Adhami, H., Alchalabi, A.E., Hoda, M., El Saddik, A.: Toward integrating software defined networks with the Internet of Things: a review. Clust. Comput. 2021, 1–18 (2021)

    Google Scholar 

  71. Alomari, Z., Zhani, M.F., Aloqaily, M., Bouachir, O.: On minimizing synchronization cost in nfv-based environments. In: 2020 16th International Conference on Network and Service Management (CNSM), pp. 1–9. IEEE, 2020

  72. Elrawy, M.F., Awad, A.I., Hamed, H.F.: Intrusion detection systems for IoT-based smart environments: a survey. J. Cloud Comput. 7(1), 1–20 (2018)

    Article  Google Scholar 

  73. Spadaccino, P., Cuomo, F.: Intrusion detection systems for iot: opportunities and challenges offered by edge computing. Accessed from https://arxiv.org/abs/2012.01174 (2020)

  74. Khraisat, A., Alazab, A.: A critical review of intrusion detection systems in the internet of things: techniques, deployment strategy, validation strategy, attacks, public datasets and challenges. Cybersecurity 4(1), 1–27 (2021)

    Article  Google Scholar 

  75. Yiğitler, H., Badihi, B., Jäntti, R.: Overview of time synchronization for IoT deployments: clock discipline algorithms and protocols. Sensors 20(20), 5928 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Masoud Rahmani.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, M., Hemmati, A. & Rahmani, A.M. Clustering for smart cities in the internet of things: a review. Cluster Comput 25, 4097–4127 (2022). https://doi.org/10.1007/s10586-022-03646-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03646-8

Keywords

Navigation