Skip to main content
Log in

Reinforcement learning for intelligent online computation offloading in wireless powered edge networks

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The method of charging mobile devices with wireless power transfer (WPT) from the base station (BS) integrated with mobile edge computing (MEC) increases the potential of MEC. The increasing demand for intelligent computation offloading requires effective decisions among local or remote computation specifically in wireless fading channels of the dynamic environment. Our main aim is to generate an effective offloading decision between local and remote computation in a real-time environment for each wireless channel while preserving optimal computation rate. In this article, we consider a wireless powered MEC system that governs a binary offloading decision to execute the task locally at the edge devices or the remote server. We propose a reinforcement learning based intelligent online offloading (RLIO) framework that adopts an optimal offloading action based on reinforcement methods. This framework acquires a worthy decision among local or remote computation for the time varying wireless channel conditions in dense networks. Numerical results show that the proposed framework can achieve optimal performance while preserving the computation time compared with existing optimization methods. Second, the average execution cost of RLIO is less than 0.4 ms per channel, which enables real-time and optimal offloading in dynamic and large-scale networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Notes

  1. Details of product specifications are available at the website of Powercast Co. (http://www.powercastco.com).

References

  1. Shuja, J., et al.: Analysis of vector code offloading framework in heterogeneous cloud and edge architectures. IEEE Access 5, 24542–24554 (2017)

    Article  Google Scholar 

  2. Othman, M., et al.: Computation offloading cost estimation in mobile cloud application models. Wirel. Pers. Commun. 97(3), 4897–4920 (2017)

    Article  Google Scholar 

  3. Kottursamy, K., Sadayappillai, B., Raja, G.: Optimized D-RAN aware data retrieval for 5G information centric networks. Wirel. Pers. Commun. 124, 1–22 (2021)

    Google Scholar 

  4. Chaudhry, S.A., et al.: An improved anonymous authentication scheme for distributed mobile cloud computing services. Clust. Comput. 22(1), 1595–1609 (2019)

    Article  Google Scholar 

  5. Posner, J., et al.: Federated learning in vehicular networks: opportunities and solutions. IEEE Netw. 35(2), 152–159 (2021)

    Article  Google Scholar 

  6. Ayyub, M., et al.: A comprehensive survey on clustering in vehicular networks: current solutions and future challenges. Ad Hoc Netw. 124, 102729 (2022)

    Article  Google Scholar 

  7. Abreha, H.G., Hayajneh, M., Serhani, M.A.: Federated learning in edge computing: a systematic survey. Sensors 22(2), 450 (2022)

    Article  Google Scholar 

  8. Kaur, M.J., et al.: Futuristic communication systems using mobile edge computing. In: Energy Conservation Solutions for Fog-Edge Computing Paradigms, pp. 267–281. Springer, Singapore (2022)

  9. Maray, M., Shuja, J.: Computation offloading in mobile cloud computing and mobile edge computing: survey, taxonomy, and open issues. Mob. Inf. Syst. (2022). https://doi.org/10.1155/2022/1121822

    Article  Google Scholar 

  10. Ranaweera, P., Jurcut, A.D., Liyanage, M.: Survey on multi-access edge computing security and privacy. IEEE Commun. Surv. Tutor. 23(2), 1078–1124 (2021)

    Article  Google Scholar 

  11. Atieh, A.T.: The next generation cloud technologies: a review on distributed cloud, fog and edge computing and their opportunities and challenges. ResearchBerg Rev. Sci. Technol. 1(1), 1–15 (2021)

    Google Scholar 

  12. Jararweh, Y.: Enabling efficient and secure energy cloud using edge computing and 5G. J. Parallel Distrib. Comput. 145, 42–49 (2020)

    Article  Google Scholar 

  13. Al Ridhawi, I., et al.: Enabling intelligent IoCV services at the edge for 5G networks and beyond. IEEE Trans. Intell. Transp. Syst. 22(8), 5190–5200 (2021)

    Article  Google Scholar 

  14. Zhai, D., et al.: Simultaneous wireless information and power transfer at 5G new frequencies: channel measurement and network design. IEEE J. Sel. Areas Commun. 37(1), 171–186 (2018)

    Article  Google Scholar 

  15. Mustafa, E., et al.: Joint wireless power transfer and task offloading in mobile edge computing: a survey. Clust. Comput. 25(4), 2429–2448 (2022)

    Article  Google Scholar 

  16. Mazouzi, H., Achir, N., Boussetta, K.: DM2-ECOP: an efficient computation offloading policy for multi-user multi-cloudlet mobile edge computing environment. ACM Trans. Internet Technol. 19(2), 1–24 (2019)

    Article  Google Scholar 

  17. Mao, Y., Zhang, J., Letaief, K.B.: Joint task offloading scheduling and transmit power allocation for mobile-edge computing systems. In: 2017 IEEE Wireless Communications and Networking Conference (WCNC). IEEE (2017)

  18. Bi, S., Zeng, Y., Zhang, R.: Wireless powered communication networks: an overview. IEEE Wirel. Commun. 23(2), 10–18 (2016)

    Article  Google Scholar 

  19. Feng, J., et al.: Computation offloading and resource allocation for wireless powered mobile edge computing with latency constraint. IEEE Wirel. Commun. Lett. 8(5), 1320–1323 (2019)

    Article  Google Scholar 

  20. Wang, F., et al.: Joint offloading and computing optimization in wireless powered mobile-edge computing systems. IEEE Trans. Wirel. Commun. 17(3), 1784–1797 (2017)

    Article  Google Scholar 

  21. Jehangiri, A.I., et al.: LiMPO: lightweight mobility prediction and offloading framework using machine learning for mobile edge computing. Clust. Comput. (2022). https://doi.org/10.1007/s10586-021-03518-7

    Article  Google Scholar 

  22. Qiu, X., et al.: Online deep reinforcement learning for computation offloading in blockchain-empowered mobile edge computing. IEEE Trans. Veh. Technol. 68(8), 8050–8062 (2019)

    Article  Google Scholar 

  23. Li, J., et al.: Deep reinforcement learning based computation offloading and resource allocation for MEC. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC). IEEE (2018)

  24. Zhou, S., Jadoon, W., Shuja, J.: Machine learning-based offloading strategy for lightweight user mobile edge computing tasks. Complexity (2021). https://doi.org/10.1155/2021/6455617

    Article  Google Scholar 

  25. Yan, J., Bi, S., Zhang, Y.J.A.: Offloading and resource allocation with general task graph in mobile edge computing: a deep reinforcement learning approach. IEEE Trans. Wirel. Commun. 19(8), 5404–5419 (2020)

    Article  Google Scholar 

  26. Jehangiri, A.I., et al.: Mobility-aware computational offloading in mobile edge networks: a survey. Clust. Comput. 24(4), 2735–2756 (2021)

    Article  Google Scholar 

  27. Wang, J., et al.: Computation offloading in multi-access edge computing using a deep sequential model based on reinforcement learning. IEEE Commun. Mag. 57(5), 64–69 (2019)

    Article  Google Scholar 

  28. Huang, L., Bi, S., Zhang, Y.-J.A.: Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks. IEEE Trans. Mob. Comput. 19(11), 2581–2593 (2019)

    Article  Google Scholar 

  29. Yu, Y., Zhang, J., Letaief, K.B.: Joint subcarrier and CPU time allocation for mobile edge computing. In: 2016 IEEE Global Communications Conference (GLOBECOM). IEEE (2016)

  30. Mao, Y., et al.: Stochastic joint radio and computational resource management for multi-user mobile-edge computing systems. IEEE Trans. Wirel. Commun. 16(9), 5994–6009 (2017)

    Article  Google Scholar 

  31. Bi, S., Zhang, Y.J.: Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading. IEEE Trans. Wirel. Commun. 17(6), 4177–4190 (2018)

    Article  Google Scholar 

  32. Zhou, F., Hu, R.Q.: Computation efficiency maximization in wireless-powered mobile edge computing networks. IEEE Trans. Wirel. Commun. 19(5), 3170–3184 (2020)

    Article  Google Scholar 

  33. Chen, X., et al.: Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning. IEEE Internet Things J. 6(3), 4005–4018 (2018)

    Article  Google Scholar 

  34. Nduwayezu, M., Pham, Q.-V., Hwang, W.-J.: Online computation offloading in NOMA-based multi-access edge computing: a deep reinforcement learning approach. IEEE Access 8, 99098–99109 (2020)

    Article  Google Scholar 

  35. Mahmood, A., et al.: Partial offloading in energy harvested mobile edge computing: a direct search approach. IEEE Access 8, 36757–36763 (2020)

    Article  Google Scholar 

  36. Psomas, C., Krikidis, I.: Wireless powered mobile edge computing: offloading or local computation? IEEE Commun. Lett. 24(11), 2642–2646 (2020)

    Article  Google Scholar 

  37. Wang, F.: Computation rate maximization for wireless powered mobile edge computing. In: 2017 23rd Asia–Pacific Conference on Communications (APCC). IEEE (2017)

  38. Zhou, F., et al.: Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems. IEEE J. Sel. Areas Commun. 36(9), 1927–1941 (2018)

    Article  Google Scholar 

  39. Bi, S., et al.: Lyapunov-guided deep reinforcement learning for stable online computation offloading in mobile-edge computing networks. IEEE Trans. Wirel. Commun. 20(11), 7519–7537 (2021)

    Article  Google Scholar 

  40. Chen, W., et al.: DRL based offloading of industrial IoT applications in wireless powered mobile edge computing. IET Commun. 16(9), 951–962 (2022)

    Article  Google Scholar 

  41. Wang, J., et al.: Optimization for computational offloading in multi-access edge computing: a deep reinforcement learning scheme. Comput. Netw. 204, 108690 (2022)

    Article  Google Scholar 

  42. Guo, S., et al.: Energy-efficient dynamic offloading and resource scheduling in mobile cloud computing. In: IEEE INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications. IEEE (2016)

  43. Guo, Y., et al.: Distributed machine learning for multiuser mobile edge computing systems. IEEE J. Sel. Top. Signal Process. 16(3), 460–473 (2022)

    Article  MathSciNet  Google Scholar 

  44. Li, C., et al.: Dynamic offloading for multiuser multi-CAP MEC networks: a deep reinforcement learning approach. IEEE Trans. Veh. Technol. 70(3), 2922–2927 (2021)

    Article  Google Scholar 

Download references

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Junaid Shuja.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethical approval

This is the authors own work not submitted anywhere else.

Informed consent

NA.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, E., Shuja, J., Bilal, K. et al. Reinforcement learning for intelligent online computation offloading in wireless powered edge networks. Cluster Comput 26, 1053–1062 (2023). https://doi.org/10.1007/s10586-022-03700-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03700-5

Keywords

Navigation