Skip to main content
Log in

A new QoS-aware method for production scheduling in the industrial internet of things using elephant herding optimization algorithm

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The Internet of Things (IoT) is a network of physical items implanted with software, sensors, etc., to link and exchange data with other devices. These devices vary in complexity from common household items to sophisticated industrial instruments. It would be challenging to choose an appropriate IoT service based on the requirements of the vast pool of accessible services with similar capabilities, given the growth of IoT-based service providers in the market. A suitable selection may be made using quality-of-service (QoS) parameters that characterize a service. IoT has several benefits over traditional communication systems. Also, it is a component of a safe and smart city system known as the Industrial Internet of Things (IIoT) which is particularly useful in the industrial field. However, it suffers from various issues such as high costs, energy consumption, and long delays. The production scheduling problem is one of the main issues in IIoT, and it is an NP-hard problem regarding cost and energy efficiency. Therefore, a meta-heuristic algorithm based on the elephant herd optimization algorithm is proposed to minimize resource costs, conversion costs, and the cost of continuous development delays. By combining the clan updating factor, separating operator, and the proposed algorithm, we created an effective and efficient method to solve the issue of production scheduling. Many experiments are performed to determine the performance of industrial environments. The outcomes demonstrate that the suggested technique can optimize planning and achieve cost reduction, efficient energy consumption, and latency decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sun, Q., Lin, K., Si, C., Xu, Y., Li, S., Gope, P.: A secure and anonymous communicate scheme over the internet of things. ACM Trans. Sens. Netw. (TOSN) 18, 1–21 (2022)

    Google Scholar 

  2. Zhu, B., Zhong, Q., Chen, Y., Liao, S., Li, Z., Shi, K., et al.: A novel reconstruction method for temperature distribution measurement based on ultrasonic tomography. IEEE Trans. Ultrason., Ferroelectr., Freq. Control. (2022). https://doi.org/10.1109/TUFFC.2022.3177469

    Article  Google Scholar 

  3. Cao, B., Gu, Y., Lv, Z., Yang, S., Zhao, J., Li, Y.: RFID reader anticollision based on distributed parallel particle swarm optimization. IEEE Internet Things J. 8, 3099–3107 (2020)

    Article  Google Scholar 

  4. Tao, F., Cheng, J., Qi, Q.: IIHub: an industrial internet-of-things hub toward smart manufacturing based on cyber-physical system. IEEE Trans. Industr. Inf. 14, 2271–2280 (2017)

    Article  Google Scholar 

  5. Sisinni, E., Saifullah, A., Han, S., Jennehag, U., Gidlund, M.: Industrial internet of things: challenges, opportunities, and directions. IEEE Trans. Ind. Inf. 14, 4724–4734 (2018)

    Article  Google Scholar 

  6. Ma, K., Li, Z., Liu, P., Yang, J., Geng, Y., Yang, B., et al.: Reliability-constrained throughput optimization of industrial wireless sensor networks with energy harvesting relay. IEEE Internet Things J. 8, 13343–13354 (2021)

    Article  Google Scholar 

  7. Tange, K., De Donno, M., Fafoutis, X., Dragoni, N.: A systematic survey of industrial internet of things security: requirements and fog computing opportunities. IEEE Commun. Surv. Tutor. 22, 2489–2520 (2020)

    Article  Google Scholar 

  8. Shen, K., David, J., De Pessemier, T., Martens, L., Joseph, W. (2019) "An efficient genetic method for multi-objective continuous production scheduling in Industrial internet of things." in 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1119–1126.

  9. Cao, B., Zhang, J., Liu, X., Sun, Z., Cao, W., Nowak, R.M., et al.: Edge–cloud resource scheduling in space–air–ground-integrated networks for internet of vehicles. IEEE Internet Things J. 9, 5765–5772 (2021)

    Article  Google Scholar 

  10. Xu, X., Niu, D., Peng, L., Zheng, S., Qiu, J.: Hierarchical multi-objective optimal planning model of active distribution network considering distributed generation and demand-side response. Sustain. Energy Technol. Assess. 53, 102438 (2022)

    Google Scholar 

  11. Gong, X., Van der Wee, M., De Pessemier, T., Verbrugge, S., Colle, D., Martens, L., et al.: Energy-and labor-aware production scheduling for sustainable manufacturing: a case study on plastic bottle manufacturing. Procedia CIRP 61, 387–392 (2017)

    Article  Google Scholar 

  12. Mou, J., Duan, P., Gao, L., Liu, X., Li, J.: An effective hybrid collaborative algorithm for energy-efficient distributed permutation flow-shop inverse scheduling. Futur. Gener. Comput. Syst. 128, 521–537 (2022)

    Article  Google Scholar 

  13. Xie, Y., Sheng, Y., Qiu, M., Gui, F.: An adaptive decoding biased random key genetic algorithm for cloud workflow scheduling. Eng. Appl. Artif. Intell. 112, 104879 (2022)

    Article  Google Scholar 

  14. Jiang, Y., Ding, Q., Wang, X.: A recovery model for production scheduling: combination of disruption management and Internet of Things. Sci. Program. (2016). https://doi.org/10.1155/2016/8264879

    Article  Google Scholar 

  15. Liu, Q., Dong, M., Chen, F.: Single-machine-based joint optimization of predictive maintenance planning and production scheduling. Robot. Comput.-Integr. Manuf. 51, 238–247 (2018)

    Article  Google Scholar 

  16. Chen, W.: Intelligent manufacturing production line data monitoring system for industrial internet of things. Comput. Commun. 151, 31–41 (2020)

    Article  Google Scholar 

  17. Hang, S., Qikun, Y., Miao, L., Chao, C. (2020) "Research on workshop manufacturing resource scheduling control method based on industrial internet of things." International Conference on Computer Engineering and Application (ICCEA), 2020, pp. 283–287

  18. Muştu, S., Eren, T.: The single machine scheduling problem with setup times under an extension of the general learning and forgetting effects. Optim. Lett. (2020). https://doi.org/10.1007/s11590-020-01641-9

    Article  Google Scholar 

  19. Long, N.B., Tran-Dang, H., Kim, D.-S.: Energy-aware real-time routing for large-scale industrial internet of things. IEEE Internet Things J. 5, 2190–2199 (2018)

    Article  Google Scholar 

  20. Farhan, L., Kharel, R., Kaiwartya, O., Hammoudeh, M., Adebisi, B.: Towards green computing for internet of things: energy oriented path and message scheduling approach. Sustain. Cities Soc. 38, 195–204 (2018)

    Article  Google Scholar 

  21. Wang, Z., Hu, H., Gong, J.: Framework for modeling operational uncertainty to optimize offsite production scheduling of precast components. Autom. Constr. 86, 69–80 (2018)

    Article  Google Scholar 

  22. Shen, K., De Pessemier, T., Gong, X., Martens, L., Joseph, W.: Genetic optimization of energy-and failure-aware continuous production scheduling in pasta manufacturing. Sensors 19, 297 (2019)

    Article  Google Scholar 

  23. H. Xu, Q. Cao, C. Fang, Y. Fu, J. Su, S. Wei, et al. (2018) "Application of elephant herd optimization algorithm based on levy flight strategy in intrusion detection." In: 2018 IEEE 4th International Symposium on Wireless Systems within the International Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS), pp. 16–20.

  24. Singh, M., Baranwal, G., Tripathi, A.K.: QoS-aware selection of IoT-based service. Arab. J. Sci. Eng. 45, 10033–10050 (2020)

    Article  Google Scholar 

  25. Yang, W., Chen, X., Xiong, Z., Xu, Z., Liu, G., Zhang, X.: A privacy-preserving aggregation scheme based on negative survey for vehicle fuel consumption data. Inf. Sci. 570, 526–544 (2021)

    Article  Google Scholar 

  26. Cao, B., Fan, S., Zhao, J., Tian, S., Zheng, Z., Yan, Y., et al.: Large-scale many-objective deployment optimization of edge servers. IEEE Trans. Intell. Transp. Syst. 22, 3841–3849 (2021)

    Article  Google Scholar 

  27. Cao, K., Ding, H., Wang, B., Lv, L., Tian, J., Wei, Q., et al.: Enhancing physical layer security for iot with non-orthogonal multiple access assisted semi-grant-free transmission. IEEE Internet Things J. (2022). https://doi.org/10.1109/JIOT.2022.3193189

    Article  Google Scholar 

  28. Li, F., Zhang, L., Ren, L. (2017) "A production-based scheduling model for complex products in cloud environment." In: 2017 5th International Conference on Enterprise Systems (ES), pp. 113–118.

  29. Li, J., Lei, H., Alavi, A.H., Wang, G.-G.: Elephant herding optimization: variants, hybrids, and applications. Mathematics 8, 1415 (2020)

    Article  Google Scholar 

  30. Naseri, A., Navimipour, N.J.: A new agent-based method for QoS-aware cloud service composition using particle swarm optimization algorithm. J. Ambient. Intell. Humaniz. Comput. 10, 1851–1864 (2019)

    Article  Google Scholar 

  31. Yang, D., Zhu, T., Wang, S., Wang, S., Xiong, Z. "LFRSNet: a robust light field semantic segmentation network combining contextual and geometric features." Front. Environ. Sci. p. 1443.

  32. Miettinen, A.P., Nurminen, J.K.: Energy efficiency of mobile clients in cloud computing. HotCloud 10, 19 (2010)

    Google Scholar 

  33. Dao, N.-N., Vu, D.-N., Lee, Y., Cho, S., Cho, C., Kim, H.: Pattern-identified online task scheduling in multitier edge computing for industrial IoT services. Mob. Inf. Syst. (2018). https://doi.org/10.1155/2018/2101206

    Article  Google Scholar 

  34. Zhang, Y., Liu, S., Liu, Y., Yang, H., Li, M., Huisingh, D., et al.: The ‘Internet of Things’ enabled real-time scheduling for remanufacturing of automobile engines. J. Clean. Prod. 185, 562–575 (2018)

    Article  Google Scholar 

  35. Yang, J., Liu, H., Ma, K., Yang, B., Guerrero, J.M.: An optimization strategy of price and conversion factor considering the coupling of electricity and gas based on three-stage game. IEEE Trans. Autom. Sci. Eng. (2022). https://doi.org/10.1109/TASE.2022.3171446

    Article  Google Scholar 

  36. Gao, K., Huang, Y., Sadollah, A., Wang, L.: A review of energy-efficient scheduling in intelligent production systems. Complex Intell. Syst. 6, 237–249 (2020)

    Article  Google Scholar 

  37. Shakarami, A., Ghobaei-Arani, M., Masdari, M., Hosseinzadeh, M.: A survey on the computation offloading approaches in mobile edge/cloud computing environment: a stochastic-based perspective. J. Grid Comput. 18, 639–671 (2020)

    Article  Google Scholar 

  38. Zheng, W., Shen, T., Chen, X., Deng, P.: Interpretability application of the just-in-time software defect prediction model. J. Syst. Softw. 188, 111245 (2022)

    Article  Google Scholar 

  39. Zhong, L., Fang, Z., Liu, F., Yuan, B., Zhang, G., Lu, J.: Bridging the theoretical bound and deep algorithms for open set domain adaptation. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3119965

    Article  Google Scholar 

  40. Meng, F., Zheng, Y., Bao, S., Wang, J., Yang, S.: Formulaic language identification model based on GCN fusing associated information. PeerJ Comput. Sci. 8, e984 (2022)

    Article  Google Scholar 

  41. Zheng, W., Liu, X., Yin, L.: Sentence representation method based on multi-layer semantic network. Appl. Sci. 11, 1316 (2021)

    Article  Google Scholar 

  42. Zhang, Y., Liu, F., Fang, Z., Yuan, B., Zhang, G., Lu, J.: Learning from a complementary-label source domain: theory and algorithms. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3086093

    Article  Google Scholar 

  43. Zheng, W., Yin, L., Chen, X., Ma, Z., Liu, S., Yang, B.: Knowledge base graph embedding module design for visual question answering model. Pattern Recogn. 120, 108153 (2021)

    Article  Google Scholar 

  44. Zenggang, X., Xiang, L., Xueming, Z., Sanyuan, Z., Fang, X., Xiaochao, Z., et al.: A service pricing-based two-stage incentive algorithm for socially aware networks. J. Signal Processing Syst. (2022). https://doi.org/10.1007/s11265-022-01768-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Jafari Navimipour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avval, D.B., Heris, P.O., Navimipour, N.J. et al. A new QoS-aware method for production scheduling in the industrial internet of things using elephant herding optimization algorithm. Cluster Comput 26, 3611–3626 (2023). https://doi.org/10.1007/s10586-022-03743-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03743-8

Keywords