Skip to main content

Advertisement

Log in

Channel estimation for massive MIMO system using the shannon entropy function

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Massive MIMO systems with a large number of antennas at the base station (BS) may significantly boost spectrum and energy efficiency. In massive MIMO systems, it’s important to have accurate channel state information (CSI) to get the most out of the large number of antennas and make sure the system works well. But because there are so many antennas at the base station (BS), the massive MIMO system has a lot of pilot overhead, which hurts system performance a lot. The spatial correlations between the signal sources in MIMO systems are low. This pattern of distribution makes it possible to use compressive sensing in massive MIMO systems to solve the channel estimation problem. In this study, we used the Shannon entropy function to come up with a new way to estimate the channel in the downlink of an FDD massive MIMO system. The Shannon entropy function is used as a sparsity regularizer for downlink channel estimation in the presented method to reduce the amount of work done by the pilot. The simulation results show that the proposed system outperforms existing compressive sensing (CS)-based channel estimation techniques in terms of NMSE performance and effectively lowers pilot overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. Larsson, E.G., Edfors, O., Tufvesson, F., Marzetta, T.L.: Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)

    Article  Google Scholar 

  2. Yang, B., Yunxue, Xu., Tong, J., Zhang, Y., Feng, Y., Yafei, Hu.: Tri-port antenna with shared radiator and self-decoupling characteristic for 5G smartphone application. IEEE Trans. Antennas Propag. 70(6), 4836–4841 (2022)

    Article  Google Scholar 

  3. Marzetta, T.L.: Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9(11), 3590–3600 (2010)

    Article  Google Scholar 

  4. Lappalainen, A., Rosenberg, C.: Can 5G fixed broadband bridge the rural digital divide? IEEE Commun. Stand. Mag. 6(2), 79–84 (2022)

    Article  Google Scholar 

  5. Rusek, F., et al.: Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process. Mag. 30(1), 40–60 (2013)

    Article  Google Scholar 

  6. Conceição, F., Antunes, C.H., Gomes, M., Silva, V., Dinis, R.: Max-min fairness optimization in uplink cell-free massive MIMO using meta-heuristics. IEEE Trans. Commun. 70(3), 1792–1807 (2022)

    Article  Google Scholar 

  7. Xu, Y., Yue, G., Mao, S.: User grouping for massive MIMO in FDD systems: new design methods and analysis. IEEE Access 2, 947–959 (2014)

    Article  Google Scholar 

  8. Albataineh, Z., Hayajneh, K., Salameh, H.B., Dang, C., Dagmseh, A.: Robust massive MIMO channel estimation for 5G networks using compressive sensing technique. AEU-Int. J. Electron. Commun. 120, 153197 (2020)

    Article  Google Scholar 

  9. Albataineh, Z., Andrawes, A., Abdullah, N.F., Nordin, R.: Energy-efficient beyond 5G multiple access technique with simultaneous wireless information and power transfer for the factory of the future. Energies 15, 6059 (2022)

    Article  Google Scholar 

  10. Albataineh, Z.: Low-complexity near-optimal iterative signal detection based on MSD-CG method for uplink massive MIMO systems. Wirel. Pers. Commun. 116, 2549–2563 (2021)

    Article  Google Scholar 

  11. Zammit, J., Wassell, I.J.: Adaptive block compressive sensing: toward a real-time and low-complexity implementation. IEEE Access 8, 120999–121013 (2020)

    Article  Google Scholar 

  12. Albataineh, Z., Salem, F.: Two pairwise iterative schemes for high dimensional blind source separation. Int. J. Speech Technol. 24, 957–968 (2021)

    Article  Google Scholar 

  13. Guo, J., Wang, L., Li, F., Xue, J.: CSI feedback with model-driven deep learning of massive MIMO systems. IEEE Commun. Lett. 26(3), 547–551 (2022)

    Article  Google Scholar 

  14. Albataineh, Z.: Blind decoding of massive MIMO uplink systems based on the higher order cumulants. Wirel. Pers. Commun. 103, 1835–1847 (2018)

    Article  Google Scholar 

  15. Shi, Y., Zhu, X.X., Bamler, R.: Nonlocal compressive sensing-based SAR tomography. IEEE Trans. Geosci. Remote Sens. 57(5), 3015–3024 (2019)

    Article  Google Scholar 

  16. Albataineh, Z., Salem, F.: New blind multiuser detection DS-CDMA algorithm using simplified fourth order cumulant matrices. IEEE Int. Symp. Circ. Syst. 2013, 1946–1949 (2013)

    Google Scholar 

  17. Bany Salameh, H., Shamekh, A.: Adaptive packet-size control for improved throughput in dynamic access networks. Clust. Comput. 24, 1935–1944 (2021)

    Article  Google Scholar 

  18. Cao, H., Chan, Y.T., So, H.C.: Efficient sensing for compressive estimation of frequency of a real sinusoid. IEEE Trans. Aerosp. Electron. Syst. 57(1), 744–750 (2021)

    Article  Google Scholar 

  19. Ahmed, I., Khalil, A., Ahmed, I., Frnda, J.: Sparse signal representation, sampling, and recovery in compressive sensing frameworks. IEEE Access 10, 85002–85018 (2022)

    Article  Google Scholar 

  20. Qi, C., Huang, Y., Jin, S., Wu, L.: Sparse channel estimation based on compressed sensing for massive MIMO systems. In: 2015 IEEE International Conference on Communications (ICC) (2015)

  21. Gao, Z., Dai, L., Dai, W., Shim, B., Wang, Z.: Structured compressive sensing-based spatio-temporal joint channel estimation for FDD massive MIMO. IEEE Trans. Commun. 64(2), 601–617 (2016)

    Article  Google Scholar 

  22. Abdel-Razeq, S., Al-Obiedollah, H., Bany Salameh, H.: Efficient user-channel pairing with power-domain sum-rate maximization in opportunistic hybrid OFDMA-NOMA IoT systems. Clust. Comput. 25, 2501–2514 (2022)

    Article  Google Scholar 

  23. Xu, X., Liu, M., Xiong, J., et al.: Key technology and application of millimeter wave communications for 5G: a survey. Clust. Comput. 22(Suppl 5), 12997–13009 (2019)

    Article  Google Scholar 

  24. Nandhini, S.A., Radha, S., Kishore, R.: Efficient compressed sensing based object detection system for video surveillance application in WMSN. Multimed. Tools Appl. 77(2), 1905–1925 (2018)

    Article  Google Scholar 

  25. Dai, L., Gao, Z., Wang, Z., Yang, Z.: Spectrum-efficient superimposed pilot design based on structured compressive sensing for downlink large-scale MIMO systems. In: 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), pp. 1–4 (2014)

  26. Kapula, P.R., Sridevi, P.V.: Channel estimation in 5G multi input multi output wireless communication using optimized deep neural framework. Clust. Comput. 25, 3517–3530 (2022)

    Article  Google Scholar 

  27. Dai, L., Wang, J., Wang, Z., Tsiaflakis, P., Moonen, M.: Spectrum- and energy-efficient OFDM based on simultaneous multi-channel reconstruction. IEEE Trans. Signal Process. 61(23), 6047–6059 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Subitha, D., Mathana, J.M.: A novel low complexity downlink linear precoding algorithm for massive MIMO systems. Clust. Comput. 22(Suppl 6), 13645–13652 (2019)

    Article  Google Scholar 

  29. Barbotin, Y., Hormati, A., Rangan, S., Vetterli, M.: Estimation of sparse MIMO channels with common support. IEEE Trans. Commun. 60(12), 3705–3716 (2012)

    Article  Google Scholar 

  30. Qiu, Z., Zhou, S., Zhao, M., Zhou, W.: Low-complexity precoding by exploiting spatial sparsity in massive MIMO systems. IEEE Trans. Wirel. Commun. 21(7), 4740–4753 (2022)

    Article  Google Scholar 

  31. Stanković, L., Sejdić, E., Stanković, S., Daković, M., Orović, I.: A tutorial on sparse signal reconstruction and its applications in signal processing. Circ. Syst. Signal Process. 38(3), 1206–1263 (2018)

    Article  Google Scholar 

  32. Fascista, A., De Monte, A., Coluccia, A., Wymeersch, H., Seco-Granados, G.: Low-complexity downlink channel estimation in mmWave multiple-input single-output systems. IEEE Wirel. Commun. Lett. 11(3), 518–522 (2022)

    Article  Google Scholar 

  33. Albreem, M.A., Alhabbash, A.H., Shahabuddin, S., Juntti, M.: Deep learning for massive MIMO uplink detectors. IEEE Commun. Surv. Tutor. 24(1), 741–766 (2022)

    Article  Google Scholar 

  34. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, Y., Yin, W.: Sparse signal reconstruction via iterative support detection. SIAM J. Imag. Sci. 3(3), 462–491 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Huang, S., Tran, D.N., Tran, T.D.: Sparse signal recovery based on nonconvex entropy minimization. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3867–3871.https://doi.org/10.1109/ICIP.2016 (2016)

  38. Li, H., Lin, Z.: Accelerated proximal gradient methods for nonconvex programming. Proc. Adv. Neural Inf. Process. Syst. 28, 379–387 (2015)

    Google Scholar 

  39. Huang, S., Tran, T.D.: Sparse signal recovery via generalized entropy functions minimization. IEEE Trans. Signal Process. 67(5), 1322–1337 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Al-Salihi, H., Al-Gharbawi, M., Said F.: Optimal pilot sequence design for machine learning based channel estimation in FDD massive mimo systems. In: 2021 ITU Kaleidoscope: Connecting Physical and Virtual Worlds (ITU K), pp. 1–5 (2021)

  41. Sadeghi, N., Azghani, M.: Channel estimation using block sparse joint orthogonal matching pursuit in massive MIMO systems. In: 2021 26th International Computer Conference, Computer Society of Iran (CSICC), pp. 1–5 (2021)

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

ZA and NA-Z wrote the main manuscript text and NA-Z prepared all figures. All authors reviewed the manuscript. All authors discussed the results and contributed to the final manuscript. ZA and AM supervise the project.

Corresponding author

Correspondence to Zaid Albataineh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albataineh, Z., Al-Zoubi, N. & Musa, A. Channel estimation for massive MIMO system using the shannon entropy function. Cluster Comput 26, 3793–3801 (2023). https://doi.org/10.1007/s10586-022-03783-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03783-0

Keywords

Navigation