Skip to main content
Log in

Detection of K-complexes in EEG signals using deep transfer learning and YOLOv3

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The K-complex is one of the most important and noticeable features in the electroencephalography (EEG) signal, therefore its detection is critical for EEG signal analysis. It is used to diagnose neurophysiologic and cognitive disorders as well as sleep studies. Existing detection methods largely depend on tedious, time-consuming, and error-prone manual inspection of the EEG waveform. In this paper, a highly accurate K-complex detection system is developed. Based on multiple convolutional neural network (CNN) feature extraction backbones and EEG waveform images, you only look once v3 (YOLOv3) detector was designed, trained, and tested. Extensive performance evaluation was performed using five deep transfer learning feature extraction models; Darknet-53, MobileNets, ResNet-18, SqueezeNet, and Darknet-53-coco. The dataset was comprised of 10948 images of EEG waveforms, with the K-complex location automatically annotated with bounding boxes. The Darknet-53 model performed consistently high (i.e., 89.84–99.44% precision and 10.41–0.55% miss rate). Thus, it is possible to perform automatic K-complex detection in real-time with high accuracy that aid practitioners in speedy EEG inspection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The dataset of EEG signals is publicly available from www.doi.org/10.5281/ZENODO.2650142. The images generated from the EEG signals during the current study are available from the corresponding author on reasonable request.

References

  1. Cho, S.P., Lee, J., Park, H.D., Lee, K.J.: Detection of arousals in patients with respiratory sleep disorders using a single channel EEG. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE, Shanghai (2005). https://doi.org/10.1109/iembs.2005.1617036

  2. Smith, J.R., Funke, W.F., Yeo, W.C., Ambuehl, R.A.: Detection of human sleep EEG waveforms. Electroencephalogr. Clin. Neurophysiol. 38(4), 435–437 (1975). https://doi.org/10.1016/0013-4694(75)90269-2

    Article  Google Scholar 

  3. Saccomandi, F., Priano, L., Mauro, A., Nerino, R., Guiot, C.: Automatic detection of transient EEG events during sleep can be improved using a multi-channel approach. Clin. Neurophysiol. 119(4), 959–967 (2008). https://doi.org/10.1016/j.clinph.2007.12.016

    Article  Google Scholar 

  4. Hartmann, S., Baumert, M.: Automatic a-phase detection of cyclic alternating patterns in sleep using dynamic temporal information. IEEE Trans. Neural Syst. Rehabil. Eng. 27(9), 1695–1703 (2019). https://doi.org/10.1109/tnsre.2019.2934828

    Article  Google Scholar 

  5. Sharma, M., Patel, V., Tiwari, J., Acharya, U.R.: Automated characterization of cyclic alternating pattern using wavelet-based features and ensemble learning techniques with EEG signals. Diagnostics 11(8), 1380 (2021). https://doi.org/10.3390/diagnostics11081380

    Article  Google Scholar 

  6. Wen, D., Cheng, Z., Li, J., Zheng, X., Yao, W., Dong, X., Saripan, M.I., Li, X., Yin, S., Zhou, Y.: Classification of ERP signal from amnestic mild cognitive impairment with type 2 diabetes mellitus using single-scale multi-input convolution neural network. J. Neurosci. Methods 363, 109353 (2021). https://doi.org/10.1016/j.jneumeth.2021.109353

    Article  Google Scholar 

  7. Wennberg, R.: Intracranial cortical localization of the human k-complex. Clin. Neurophysiol. 121(8), 1176–1186 (2010). https://doi.org/10.1016/j.clinph.2009.12.039

    Article  Google Scholar 

  8. Gandhi, M.H., Emmady, P.D.: Physiology, k complex. StatPearls [Internet] (2021). Last accessed 15 March 2022

  9. Bremer, G., Smith, J.R., Karacan, I.: Automatic detection of the k-complex in sleep electroencephalograms. IEEE Trans. Biomed. Eng. BME 17(4), 314–323 (1970). https://doi.org/10.1109/tbme.1970.4502759

    Article  Google Scholar 

  10. Dumitrescu, C., Costea, I.-M., Cormos, A.-C., Semenescu, A.: Automatic detection of k-complexes using the cohen class recursiveness and reallocation method and deep neural networks with EEG signals. Sensors 21(21), 7230 (2021). https://doi.org/10.3390/s21217230

    Article  Google Scholar 

  11. Al-Salman, W., Li, Y., Wen, P.: Detection of EEG k-complexes using fractal dimension of time frequency images technique coupled with undirected graph features. Front. Neuroinform. 13, 45 (2019). https://doi.org/10.3389/fninf.2019.00045

    Article  Google Scholar 

  12. AL-Salman, W., Li, Y., Wen, P.: K-complexes detection in EEG signals using fractal and frequency features coupled with an ensemble classification model. Neuroscience 422, 119–133 (2019). https://doi.org/10.1016/j.neuroscience.2019.10.034

    Article  Google Scholar 

  13. Kantar, T., Erdamar, A.: Detection of k-complexes in sleep EEG with support vector machines. In: 2017 25th Signal Processing and Communications Applications Conference (SIU), pp. 1–4 (2017). https://doi.org/10.1109/SIU.2017.7960311

  14. Yücelbaş, C., Yücelbaş, Ş, Özşen, S., Tezel, G., Küççüktürk, S., Yosunkaya, Ş: A novel system for automatic detection of k-complexes in sleep EEG. Neural Comput. Appl. 29(8), 137–157 (2017). https://doi.org/10.1007/s00521-017-2865-3

    Article  Google Scholar 

  15. Lajnef, T.: Meet spinky: an open-source spindle and k-complex detection toolbox validated on the open-access montreal archive of sleep studies (MASS). Front. Neuroinform. (2016). https://doi.org/10.3389/fninf.2017.00015

    Article  Google Scholar 

  16. Patti, C.R., Abdullah, H., Shoji, Y., Hayley, A., Schilling, C., Schredl, M., Cvetkovic, D.: K-complex detection based on pattern matched wavelets. In: 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES). IEEE, Kuala Lumpur (2016). https://doi.org/10.1109/iecbes.2016.7843495

  17. Lajnef, T., Chaibi, S., Eichenlaub, J.B., Ruby, P.M., Aguera, P.E., Samet, M., Kachouri, A., Jerbi, K.: Sleep spindle and k-complex detection using tunable q-factor wavelet transform and morphological component analysis. Front Hum Neurosci 9, 414 (2015). https://doi.org/10.3389/fnhum.2015.00414

    Article  Google Scholar 

  18. Krohne, L.K., Hansen, R.B., Christensen, J.A.E., Sorensen, H.B.D., Jennum, P.: Detection of k-complexes based on the wavelet transform. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, Chicago (2014). https://doi.org/10.1109/embc.2014.6944859

  19. Zamir, Z.R., Sukhorukova, N., Amiel, H., Ugon, A., Philippe, C.: Optimization-based features extraction for k-complex detection. ANZIAM J 55, 384 (2014). https://doi.org/10.21914/anziamj.v55i0.7802

    Article  MathSciNet  Google Scholar 

  20. Zacharaki, E.I., Pippa, E., Koupparis, A., Kokkinos, V., Kostopoulos, G.K., Megalooikonomou, V.: One-class classification of temporal EEG patterns for k-complex extraction. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, Osaka (2013). https://doi.org/10.1109/embc.2013.6610870

  21. Shete, V.V., Sonar, S., Charantimatp, A., Elgendelwar, S.: Detection of k-complex in sleep EEG signal with matched filter and neural network. Int. J. Eng. Res. Technol. 4, 1–4 (2012)

    Google Scholar 

  22. Devuyst, S., Dutoit, T., Stenuit, P., Kerkhofs, M.: Automatic k-complexes detection in sleep EEG recordings using likelihood thresholds. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. IEEE, Buenos Aires (2010). https://doi.org/10.1109/iembs.2010.5626447

  23. Strungaru, C., Popescu, M.S.: Neural network for sleep EEG k-complex detection. Biomed. Tech. 43(s3), 113–116 (1998). https://doi.org/10.1515/bmte.1998.43.s3.113

    Article  Google Scholar 

  24. ...Gill, S.S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., Golec, M., Stankovski, V., Wu, H., Abraham, A., Singh, M., Mehta, H., Ghosh, S.K., Baker, T., Parlikad, A.K., Lutfiyya, H., Kanhere, S.S., Sakellariou, R., Dustdar, S., Rana, O., Brandic, I., Uhlig, S.: AI for next generation computing: emerging trends and future directions. Internet Things 19, 100514 (2022). https://doi.org/10.1016/j.iot.2022.100514

    Article  Google Scholar 

  25. Yu, Z., Wang, K., Wan, Z., Xie, S., Lv, Z.: Popular deep learning algorithms for disease prediction: a review. Clust. Comput. (2022). https://doi.org/10.1007/s10586-022-03707-y

    Article  Google Scholar 

  26. Kumar, M.R., Rao, Y.S.: Epileptic seizures classification in EEG signal based on semantic features and variational mode decomposition. Clust. Comput. 22(S6), 13521–13531 (2018). https://doi.org/10.1007/s10586-018-1995-4

    Article  Google Scholar 

  27. Devuyst, S.: The DREAMS Databases and Assessment Algorithm. Zenodo (2005) https://doi.org/10.5281/ZENODO.2650142. zenodo.org/record/2650142

  28. Redmon, J., Farhadi, A.: YOLOv3: An Incremental Improvement (2018). http://arxiv.org/abs/1804.02767

  29. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  30. Redmon, J.: Darknet: Open Source Neural Networks in C (2013–2016). http://pjreddie.com/darknet/

  31. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: Mobilenetv2: Inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018). https://doi.org/10.1109/CVPR.2018.00474

  32. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  33. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and<1mb model size. arXiv (2016)

  34. Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312. https://arxiv.org/abs/1405.0312

  35. Sarker, I.H.: Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput. Sci. 2(6), 1–20 (2021). https://doi.org/10.1007/s42979-021-00815-1

    Article  MathSciNet  Google Scholar 

  36. Al-Salman, W., Li, Y., Wen, P.: Detection of k-complexes in EEG signals using a multi-domain feature extraction coupled with a least square support vector machine classifier. Neurosci. Res. 172, 26–40 (2021). https://doi.org/10.1016/j.neures.2021.03.012

    Article  Google Scholar 

  37. Oliveira, G.H.B.S., Coutinho, L.R., da Silva, J.C., Pinto, I.J.P., Ferreira, J.M.S., Silva, F.J.S., Santos, D.V., Teles, A.S.: Multitaper-based method for automatic k-complex detection in human sleep EEG. Expert Syst. Appl. 151, 113331 (2020). https://doi.org/10.1016/j.eswa.2020.113331

    Article  Google Scholar 

  38. Ranjan, R., Arya, R., Fernandes, S.L., Sravya, E., Jain, V.: A fuzzy neural network approach for automatic k-complex detection in sleep EEG signal. Pattern Recognit. Lett. 115, 74–83 (2018). https://doi.org/10.1016/j.patrec.2018.01.001

    Article  Google Scholar 

  39. Ghanbari, Z., Moradi, M.: K-complex detection based on synchrosqueezing transform. AUT J. Electr. Eng. 49(2), 214–222 (2017). https://doi.org/10.22060/eej.2017.12577.5096

    Article  Google Scholar 

  40. Patti, C.R., Abdullah, H., Shoji, Y., Hayley, A., Schilling, C., Schredl, M., Cvetkovic, D.: K-complex detection based on pattern matched wavelets. In: 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), pp. 470–474 (2016). https://doi.org/10.1109/IECBES.2016.7843495

Download references

Acknowledgements

This work would not be possible without the financial support of Jordan University of Science and Technology, deanship of research.

Funding

This work was funded by Jordan University of Science and Technology (JUST), deanship of research, award number 20220146.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: NK, and LF; Methodology: NK, and MF; Formal analysis and investigation: NK, and MF; Writing-original draft preparation: MF; Writing-review and editing: NK, MF, and LF; Funding acquisition: MF and LF; Resources: MF; Supervision: NK, and LF. Visualization: NK

Corresponding author

Correspondence to Natheer Khasawneh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khasawneh, N., Fraiwan, M. & Fraiwan, L. Detection of K-complexes in EEG signals using deep transfer learning and YOLOv3. Cluster Comput 26, 3985–3995 (2023). https://doi.org/10.1007/s10586-022-03802-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03802-0

Keywords

Navigation