Skip to main content
Log in

An optimized deep networks for securing 5g communication system

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Nowadays, cellular applications rule the digital world with their betterment. However, security is the primary concern for a better communication range during the communication process. If the messages are hacked, data overhead and collisions occur. So, the present research work has aimed to design the novel Buffalo-based Autoencoder Security Framework (BbASF) developed in the Orthogonal-Frequency-Division- Multiplexing (OFDM) channel. Consequently, the function of the designed model is checked with the Denial of Service (DoS)-CICIDS dataset. The planned model is tested in the python environment. After that, the communication parameters were validated and compared with other schemes. The presented approach has earned the finest outcome in all performance assessments than the compared models. Furthermore, it has reduced the packet loss to the desired level, 2.2e-6. In addition, the presented novel BbASF is good at forecasting malicious behavior; it has earned the best attack detection score of 99.6%. Hence, the present model efficiently predicts malicious features and enriches communication facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Sánchez, J.D.V., Urquiza-Aguiar, L., Paredes, M.C.P., Osorio, D.P.M.: Survey on physical layer security for 5G wireless networks. Ann. Telecommun. 76(3), 155–174 (2021). https://doi.org/10.1007/s12243-020-00799-8

    Article  Google Scholar 

  2. Sánchez, J.D.V., Urquiza-Aguiar, L., Paredes, M.C.P.: Physical layer security for 5G wireless networks: a comprehensive survey. In 2019 3rd cyber security in networking conference (CSNet) (pp. 122–129). IEEE. (2019). https://doi.org/10.1007/s12243-019-00706-w

  3. Ahmad, I., Shahabuddin, S., Kumar, T., Okwuibe, J., Gurtov, A., Ylianttila, M.: Security for 5G and beyond. IEEE Commun. Surv. Tutor. 21(4), 3682–3722 (2019). https://doi.org/10.1109/COMST.2019.2916180

    Article  Google Scholar 

  4. Porambage, P., Gür, G., Osorio, D.P.M., Liyanage, M., Gurtov, A., Ylianttila, M.: The roadmap to 6G security and privacy. IEEE Open. J. Commun. Soc. 2, 1094–1122 (2021). https://doi.org/10.1109/OJCOMS.2021.3078081

    Article  Google Scholar 

  5. Wazid, M., Das, A.K., Shetty, S., Gope, P., Rodrigues, J.J.: Security in 5G-enabled internet of things communication: issues, challenges, and future research roadmap. IEEE Access 9, 4466–4489 (2020). https://doi.org/10.1109/ACCESS.2020.3047895

    Article  Google Scholar 

  6. Han, K., Ma, M., Li, X., Feng, Z., Hao, J.: An efficient handover authentication mechanism for 5G wireless network. In: 2019 IEEE Wireless Communication and Network Conference (WCNC) (pp. 1–8). IEEE. (2019). https://doi.org/10.1109/WCNC.2019.8885915

  7. Saleem, K., Alabduljabbar, G.M., Alrowais, N., Al-Muhtadi, J., Imran, M., Rodrigues, J.J.P.C.: Bio-inspired network security for 5G-enabled IoT applications. IEEE Access 8, 229152–229160 (2020). https://doi.org/10.1109/ACCESS.2020.3046325

    Article  Google Scholar 

  8. Sicari, S., Rizzardi, A., Coen-Porisini, A.: 5G In the internet of things era: an overview on security and privacy challenges. Comput. Netw. 179, 107345 (2020). https://doi.org/10.1016/j.comnet.2020.107345

    Article  Google Scholar 

  9. Mazurczyk, W., Bisson, P., Jover, R.P., Nakao, K., Cabaj, K.: Challenges and novel solutions for 5G network security. Privacy Trust. IEEE Wirel. Commun. 27(4), 6–7 (2020). https://doi.org/10.1109/MWC.2020.9170261

    Article  Google Scholar 

  10. Dutta, A., Hammad, E.: 5G security challenges and opportunities: a system approach. In: 2020 IEEE 3rd 5G World Forum (5GWF) pp 109–114 (2020). https://doi.org/10.1109/5GWF49715.2020.9221122

  11. Sharma, V., You, I., Guizani, N.: Security of 5G–V2X: technologies, standardization, and research directions. IEEE Netw. 34(5), 306–314 (2020). https://doi.org/10.1109/MNET.001.1900662

    Article  Google Scholar 

  12. Noura, H.N., Melki, R., Chehab, A.: Efficient data confidentiality scheme for 5g wireless NOMA communications. J. Inf. Secur. Appl. 58, 102781 (2021). https://doi.org/10.1016/j.jisa.2021.102781

    Article  Google Scholar 

  13. Sun, Y., Tian, Z., Li, M., Zhu, C., Guizani, N.: Automated attack and defense framework toward 5G security. IEEE Netw. 34(5), 247–253 (2020). https://doi.org/10.1109/MNET.011.1900635

    Article  Google Scholar 

  14. Furqan, H.M., Solaija, M.S.J., Türkmen, H., Arslan, H.: Wireless communication, sensing, and REM: a security perspective. IEEE Open J. Commun. Soc. 2, 287–321 (2021). https://doi.org/10.1109/OJCOMS.2021.3054066

    Article  Google Scholar 

  15. Al-Turjman, F.: Intelligence and security in big 5G-oriented IoNT: an overview. Future Gener. Comput. Syst. 102, 357–368 (2020). https://doi.org/10.1016/j.future.2019.08.009

    Article  Google Scholar 

  16. Petrov, V., Moltchanov, D. Jornet, J.M. Koucheryavy, Y.: Exploiting multipath terahertz communications for physical layer security in beyond 5G networks. IEEE INFOCOM 2019—IEEE Conference Computing Communication Workshops (INFOCOM WKSHPS), pp. 865–872 (2019). https://doi.org/10.1109/INFCOMW.2019.8845312

  17. Cao, J., Ma, M., Li, H., Ma, R., Sun, Y., Yu, P., Xiong, L.: A survey on security aspects for 3GPP 5G networks. IEEE Commun. Surv. Tutor. 22(1), 170–195 (2020). https://doi.org/10.1109/COMST.2019.2951818

    Article  Google Scholar 

  18. Lu, R., Zhang, L., Ni, J., Fang, Y.: 5G vehicle-to-everything services: gearing up for security and privacy. Proc IEEE 108(2), 373–389 (2020). https://doi.org/10.1109/JPROC.2019.2948302

    Article  Google Scholar 

  19. Wang, N., Wang, P., Alipour-Fanid, A., Jiao, L., Zeng, K.: Physical-layer security of 5G wireless networks for IoT: challenges and opportunities. IEEE Internet Things J. 6(5), 8169–8181 (2019). https://doi.org/10.1109/JIOT.2019.2927379

    Article  Google Scholar 

  20. Tang, J., Wen, H., Zeng, K., Liao, R., Pan, F., Hu, L.: Light-weight physical layer enhanced security schemes for 5G wireless networks. IEEE Netw. 33(5), 126–133 (2019). https://doi.org/10.1109/MNET.001.1700412

    Article  Google Scholar 

  21. Kapula, P.R., Sridevi, P.V.: Channel estimation in 5G multi input multi output wireless communication using optimized deep neural framework. Clust. Comput. 25, 3517–3530 (2022). https://doi.org/10.1007/s10586-022-03587-2

    Article  Google Scholar 

  22. BanySalameh, H., Al-Obiedollah, H., Al-Hayek, M., Abdel-Razeq, S., Al-Ajlouni, A.: A two-dimensional OMA-NOMA user-pairing and power-minimization approach for opportunistic B5G-enabled IoT networks. Clust. Comput. (2022). https://doi.org/10.1007/s10586-022-03759-0

    Article  Google Scholar 

  23. Aruna, M.G., Hasan, M.K., Islam, S., Mohan, K.G., Sharan, P., Hassan, R.: Cloud to cloud data migration using self sovereign identity for 5G and beyond. Clust. Comput. 25(4), 2317–31 (2022)

    Article  Google Scholar 

  24. Rischke, J., Sossalla, P., Itting, S., Fitzek, F.H.P., Reisslein, M.: 5G campus networks: a first measurement study. IEEE Access 9, 121786–121803 (2021). https://doi.org/10.1109/ACCESS.2021.3108423

    Article  Google Scholar 

  25. Yan, M., Chan, C.A., Li, W., Lei, L., Gygax, A.F., Chih-Lin, I.: Assessing the energy consumption of proactive mobile edge caching in wireless networks. IEEE Access 7, 104394–404 (2019). https://doi.org/10.1109/ACCESS.2019.2931449

    Article  Google Scholar 

  26. Hou, G., Chen, L.: D2D communication mode selection and resource allocation in 5G wireless networks. Comput. Commun. 155, 244–251 (2020). https://doi.org/10.1016/j.comcom.2020.03.025

    Article  Google Scholar 

  27. Abdalla, A.S., Powell, K., Marojevic, V., Geraci, G.: UAV-assisted attack prevention, detection, and recovery of 5G networks. IEEE Wirel. Commun. 27(4), 40–47 (2020). https://doi.org/10.1109/MWC.01.1900545

    Article  Google Scholar 

  28. Patel, N., Patel, S., Mankad, S.H.: Impact of autoencoder based compact representation on emotion detection from audio. J. Ambient Intel. Hum. Comput. 13, 867–885 (2022). https://doi.org/10.1007/s12652-021-02979-3

    Article  Google Scholar 

  29. Panhalkar, A.R., Doye, D.D.: Optimization of decision trees using modified African buffalo algorithm. J. King Saud Univ. Comput. Inf. Sci. 1:10 (2021). Doi: https://doi.org/10.1016/j.jksuci.2021.01.011

  30. Latif, S., Zou, Z., Idrees, Z., Ahmad, J.: A novel attack detection scheme for the industrial internet of things using a lightweight random neural network. IEEE Access 8, 89337–89350 (2020). https://doi.org/10.1109/ACCESS.2020.2994079

    Article  Google Scholar 

  31. Islam, R., Refat, R.U.D., Yerram, S.M., Malik, H.: Graph-based intrusion detection system for controller area networks. IEEE Trans. Intell. Transp. Syst. 23(3), 1727–1736 (2022). https://doi.org/10.1109/TITS.2020.3025685

    Article  Google Scholar 

  32. Moudoud, H., Khoukhi, L., Cherkaoui, S.: Prediction and detection of FDIA and DDoS attacks in 5G enabled IoT. IEEE Netw. 35(2), 194–201 (2021). https://doi.org/10.1109/MNET.011.2000449

    Article  Google Scholar 

Download references

Acknowledgements

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambidi Naveena.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naveena, A., Lakshmi, M.V. & Lakshmi, M.V. An optimized deep networks for securing 5g communication system. Cluster Comput 26, 4015–4029 (2023). https://doi.org/10.1007/s10586-022-03806-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03806-w

Keywords

Navigation