Skip to main content
Log in

A comprehensive comparison study of traditional classifiers and deep neural networks for forest fire detection

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Forest fires cause great harm to people, environment, and nature. Fire detection using forest landscape images can play a critical role in the design of expert systems required to solve the forest fire problem. The main aim of this study is to evaluate the classification accuracy of different classifier models for efficiently detecting forest fires and to present an effective and successful model. At this point, classification performances of traditional and deep neural networks (DNN) based classifiers were compared on landscape images dataset taken from the Mendeley repository within the frame of well-known metrics such as accuracy, sensitivity, specificity, precision and false negative rate. The DNN-3 classifier performed very well on the ResNet50 deep features extracted from images with 97.11% accuracy, 96.84% sensitivity, 3.16% false negative rate, 97.37% specificity, and 97.35% precision. This model (ResNet50+DNN-3) offered the most area under the curve with 0.971. In this context, it is thought that the proposed model could play an active role in the design of expert systems that will support the forest protection and monitoring units by easily integrating with real-time internet of things and embedded system applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cui, F.: Deployment and integration of smart sensors with IoT devices detecting fire disasters in huge forest environment. Comput. Commun. 150, 818–827 (2020). https://doi.org/10.1016/j.comcom.2019.11.051

    Article  Google Scholar 

  2. Lalitha, K., Veerapandu, G.: Forest fire detection using satellite images. Smart Innov. Syst. Technol. 290, 277–284 (2023). https://doi.org/10.1007/978-981-19-0108-9_29/COVER

    Article  Google Scholar 

  3. Verma, N., Singh, D.: Analysis of cost-effective sensors: data Fusion approach used for forest fire application. Mater. Today Proc. 24, 2283–2289 (2020). https://doi.org/10.1016/J.MATPR.2020.03.756

    Article  Google Scholar 

  4. González, T.M., González-Trujillo, J.D., Muñoz, A., Armenteras, D.: Differential effects of fire on the occupancy of small mammals in neotropical savanna-gallery forests. Perspect. Ecol. Conserv. 19, 179–188 (2021). https://doi.org/10.1016/j.pecon.2021.03.005

    Article  Google Scholar 

  5. Chowdary, V., Gupta, M.K.: Automatic forest fire detection and monitoring techniques: a survey. Adv. Intell. Syst. Comput. 624, 1111–1117 (2018). https://doi.org/10.1007/978-981-10-5903-2_116/COVER

    Article  Google Scholar 

  6. Dampage, U., Bandaranayake, L., Wanasinghe, R., Kottahachchi, K., Jayasanka, B.: Forest fire detection system using wireless sensor networks and machine learning. Sci. Rep. 12, 1–11 (2022). https://doi.org/10.1038/S41598-021-03882-9/TABLES/3

    Article  Google Scholar 

  7. Mohajane, M., Costache, R., Karimi, F., Bao Pham, Q., Essahlaoui, A., Nguyen, H., Laneve, G., Oudija, F.: Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area. Ecol. Indic. 129, 107869 (2021). https://doi.org/10.1016/j.ecolind.2021.107869

    Article  Google Scholar 

  8. Sathishkumar, V.E., Cho, J., Subramanian, M., Naren, O.S.: Forest fire and smoke detection using deep learning-based learning without forgetting. Fire Ecol. 19, 1–17 (2023). https://doi.org/10.1186/S42408-022-00165-0/FIGURES/5

    Article  Google Scholar 

  9. Ram Prasanna, K., Mathana, J.M., Ramya, T.A., Nirmala, R.: LoRa network based high performance forest fire detection system. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.05.656

    Article  Google Scholar 

  10. Qadir, A., Talukdar, N.R., Uddin, M.M., Ahmad, F., Goparaju, L.: Predicting forest fire using multispectral satellite measurements in Nepal. Remote Sens. Appl. 23, 100539 (2021). https://doi.org/10.1016/j.rsase.2021.100539

    Article  Google Scholar 

  11. Matin, M.A., Chitale, V.S., Murthy, M.S.R., Uddin, K., Bajracharya, B., Pradhan, S., Matin, M.A., Chitale, V.S., Murthy, M.S.R., Uddin, K., Bajracharya, B., Pradhan, S.: Understanding forest fire patterns and risk in Nepal using remote sensing, geographic information system and historical fire data. Int. J. Wildland Fire. 26, 276–286 (2017). https://doi.org/10.1071/WF16056

    Article  Google Scholar 

  12. Zheng, Z., Gao, Y., Yang, Q., Zou, B., Xu, Y., Chen, Y., Yang, S., Wang, Y., Wang, Z.: Predicting forest fire risk based on mining rules with ant-miner algorithm in cloud-rich areas. Ecol. Indic. 118, 106772 (2020). https://doi.org/10.1016/j.ecolind.2020.106772

    Article  Google Scholar 

  13. Veraverbeke, S., Hook, S., Hulley, G.: An alternative spectral index for rapid fire severity assessments. Remote Sens. Environ. 123, 72–80 (2012). https://doi.org/10.1016/j.rse.2012.02.025

    Article  Google Scholar 

  14. dos Reis, M., Graça, P.M.L., de Yanai, A., Ramos, A.M., Fearnside, C.J.P.: Forest fires and deforestation in the central Amazon: effects of landscape and climate on spatial and temporal dynamics. J. Environ. Manage 288, 112310 (2021). https://doi.org/10.1016/j.jenvman.2021.112310

    Article  Google Scholar 

  15. Goenka, N., Tiwari, S.: AlzVNet: A volumetric convolutional neural network for multiclass classification of Alzheimer’s disease through multiple neuroimaging computational approaches. Biomed. Signal. Process. Control. 74, 103500 (2022). https://doi.org/10.1016/J.BSPC.2022.103500

    Article  Google Scholar 

  16. Noella, R.S.N., Priyadarshini, J.: Diagnosis of Alzheimer’s, Parkinson’s disease and frontotemporal dementia using a generative adversarial deep convolutional neural network. Neural Comput. Appl. 35, 2845–2854 (2023). https://doi.org/10.1007/S00521-022-07750-Z/FIGURES/8

    Article  Google Scholar 

  17. Mzoughi, O., Yahiaoui, I.: Deep learning-based segmentation for disease identification. Ecol Inf. 75, 102000 (2023). https://doi.org/10.1016/J.ECOINF.2023.102000

    Article  Google Scholar 

  18. Li, E., Wang, L., Xie, Q., Gao, R., Su, Z., Li, Y.: A novel deep learning method for maize disease identification based on small sample-size and complex background datasets. Ecol Inf. 75, 102011 (2023). https://doi.org/10.1016/J.ECOINF.2023.102011

    Article  Google Scholar 

  19. Xie, Y., Peng, M.: Forest fire forecasting using ensemble learning approaches. Neural Comput. Appl. 31, 4541–4550 (2019). https://doi.org/10.1007/S00521-018-3515-0/FIGURES/6

    Article  Google Scholar 

  20. Xofis, P., Tsiourlis, G., Konstantinidis, P.: A fire Danger Index for the early detection of areas vulnerable to wildfires in the Eastern Mediterranean region. EuroMediterr J. Environ. Integr. 5, 1–13 (2020). https://doi.org/10.1007/S41207-020-00173-Z/TABLES/4

    Article  Google Scholar 

  21. de Almeida Pereira, G.H., Fusioka, A.M., Nassu, B.T., Minetto, R.: Active fire detection in Landsat-8 imagery: a large-scale dataset and a deep-learning study. ISPRS J. Photogrammetry Remote Sens 178, 171–186 (2021). https://doi.org/10.1016/J.ISPRSJPRS.2021.06.002

    Article  Google Scholar 

  22. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.M., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017). https://doi.org/10.1016/J.MEDIA.2016.05.004

    Article  Google Scholar 

  23. Kelhä, V., Herland, E.-A., Lohi, A.: Satellite based forest fire detection and automatic alert system—Pilot experiment. Early Warn. Syst. Nat. Disaster Reduct. (2003). https://doi.org/10.1007/978-3-642-55903-7_89

    Article  Google Scholar 

  24. de Venâncio, P.V.A.B., Campos, R.J., Rezende, T.M., Lisboa, A.C., Barbosa, A.V.: A hybrid method for fire detection based on spatial and temporal patterns. Neural Comput. Appl. (2023). https://doi.org/10.1007/S00521-023-08260-2/TABLES/3

    Article  Google Scholar 

  25. Akıncı, H.A., Akıncı, H.: Machine learning based forest fire susceptibility assessment of Manavgat district (Antalya), Turkey. Earth Sci. Inform. 16, 397–414 (2023). https://doi.org/10.1007/S12145-023-00953-5/FIGURES/8

    Article  Google Scholar 

  26. Arnett, J.T.T.R., Coops, N.C., Daniels, L.D., Falls, R.W.: Detecting forest damage after a low-severity fire using remote sensing at multiple scales. Int. J. Appl. Earth Obs. Geoinf. 35, 239–246 (2015). https://doi.org/10.1016/J.JAG.2014.09.013

    Article  Google Scholar 

  27. Çolak, E., Sunar, F.: Evaluation of forest fire risk in the Mediterranean turkish forests: a case study of Menderes region, Izmir. Int. J. Disaster Risk Reduct. 45, 101479 (2020). https://doi.org/10.1016/j.ijdrr.2020.101479

    Article  Google Scholar 

  28. Dindaroglu, T., Babur, E., Yakupoglu, T., Rodrigo-Comino, J., Cerdà, A.: Evaluation of geomorphometric characteristics and soil properties after a wildfire using Sentinel-2 MSI imagery for future fire-safe forest. Fire Saf. J. 122, 103318 (2021). https://doi.org/10.1016/j.firesaf.2021.103318

    Article  Google Scholar 

  29. Koetz, B., Morsdorf, F., van der Linden, S., Curt, T., Allgöwer, B.: Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data. For. Ecol. Manage. 256, 263–271 (2008). https://doi.org/10.1016/J.FORECO.2008.04.025

    Article  Google Scholar 

  30. Sannigrahi, S., Pilla, F., Basu, B., Basu, A.S., Sarkar, K., Chakraborti, S., Joshi, P.K., Zhang, Q., Wang, Y., Bhatt, S., Bhatt, A., Jha, S., Keesstra, S., Roy, P.S.: Examining the effects of forest fire on terrestrial carbon emission and ecosystem production in India using remote sensing approaches. Sci. Total Environ. 725, 138331 (2020). https://doi.org/10.1016/j.scitotenv.2020.138331

    Article  Google Scholar 

  31. da Silva, S.S., Fearnside, P.M., de Alencastro Graça, P.M., Numata, I., de Melo, A.W., Ferreira, E.L., Santos, E.A., Dias, M.S., Lima, R.C., de Lima, P.R.: Increasing bamboo dominance in southwestern Amazon forests following intensification of drought-mediated fires. For Ecol Manage 490,(2021)

    Article  Google Scholar 

  32. Singh, K.R., Neethu, K.P., Madhurekaa, K., Harita, A., Mohan, P.: Parallel SVM model for forest fire prediction. Soft Comput. Lett. 3, 100014 (2021). https://doi.org/10.1016/J.SOCL.2021.100014

    Article  Google Scholar 

  33. Tang, X., Machimura, T., Li, J., Liu, W., Hong, H.: A novel optimized repeatedly random undersampling for selecting negative samples: A case study in an SVM-based forest fire susceptibility assessment. J. Environ. Manage. 271, 111014 (2020). https://doi.org/10.1016/J.JENVMAN.2020.111014

    Article  Google Scholar 

  34. Yang, X., Chen, R., Zhang, F., Zhang, L., Fan, X., Ye, Q., Fu, L.: Pixel-level automatic annotation for forest fire image. Eng. Appl. Artif. Intell. 104, 104353 (2021). https://doi.org/10.1016/J.ENGAPPAI.2021.104353

    Article  Google Scholar 

  35. Mishra, B., Panthi, S., Poudel, S., Ghimire, B.R.: Forest fire pattern and vulnerability mapping using deep learning in Nepal. Fire Ecol. 19, 1–15 (2023). https://doi.org/10.1186/S42408-022-00162-3/TABLES/6

    Article  Google Scholar 

  36. Bjånes, A., De La Fuente, R., Mena, P.: A deep learning ensemble model for wildfire susceptibility mapping. Ecol Inf. 65, 101397 (2021). https://doi.org/10.1016/J.ECOINF.2021.101397

    Article  Google Scholar 

  37. Kalaivani, V., Chanthiya, P.: A novel custom optimized convolutional neural network for a satellite image by using forest fire detection. Earth Sci. Inform. 15, 1285–1295 (2022). https://doi.org/10.1007/S12145-022-00801-Y/FIGURES/9

    Article  Google Scholar 

  38. Liu, Z., Zhang, K., Wang, C., Huang, S.: Research on the identification method for the forest fire based on deep learning. Optik 223, 165491 (2020). https://doi.org/10.1016/J.IJLEO.2020.165491

    Article  Google Scholar 

  39. Permana, S.D.H., Saputra, G., Arifitama, B., Caesarendra, W., Rahim, R.: Classification of bird sounds as an early warning method of forest fires using Convolutional Neural Network (CNN) algorithm. J. King Saud University-Comput. Inform. Sci. (2021). https://doi.org/10.1016/J.JKSUCI.2021.04.013

    Article  Google Scholar 

  40. Shamsoshoara, A., Afghah, F., Razi, A., Zheng, L., Fulé, P.Z., Blasch, E.: Aerial imagery pile burn detection using deep learning: The FLAME dataset. Comput. Netw. 193, 108001 (2021). https://doi.org/10.1016/J.COMNET.2021.108001

    Article  Google Scholar 

  41. de Venâncio, P.V.A.B., Lisboa, A.C., Barbosa, A.: An automatic fire detection system based on deep convolutional neural networks for low-power, resource-constrained devices. Neural Comput. Appl. 34, 15349–15368 (2022). https://doi.org/10.1007/S00521-022-07467-Z/TABLES/6

    Article  Google Scholar 

  42. Vikram, R., Sinha, D.: A multimodal framework for forest fire detection and monitoring. Multimed Tools Appl. (2022). https://doi.org/10.1007/S11042-022-13043-3/FIGURES/16

    Article  Google Scholar 

  43. Khan, A., Hassan, B.: Dataset for forest fire detection. Mendeley Data (2020). https://doi.org/10.17632/GJMR63RZ2R.1

    Article  Google Scholar 

  44. Weiss, K., Khoshgoftaar, T.M., Wang, D.D.: A survey of transfer learning. J. Big Data. 3, 9 (2016). https://doi.org/10.1186/s40537-016-0043-6

    Article  Google Scholar 

  45. Menard, S.: Applied Logistic Regression Analysis, https://books.google.com.tr/books?hl=tr&lr=&id=EAI1QmUUsbUC&oi=fnd&pg=PP7&ots=4VEJQ-nWHW&sig=3ExSoI7tcGeDG2cX8DwYwuY0DJo&redir_esc=y#v=onepage&q&f=false

  46. Soria, D., Garibaldi, J.M., Ambrogi, F., Biganzoli, E.M., Ellis, I.O.: A ‘non-parametric’ version of the naive Bayes classifier. Knowl. Based Syst. 24, 775–784 (2011). https://doi.org/10.1016/J.KNOSYS.2011.02.014

    Article  Google Scholar 

  47. Vapnik, V.N.: The Nature of Statistical Learning Theory. In: Vladimir, N. (ed.) Technometrics. Springer, New York (2000). https://doi.org/10.1007/978-1-4757-3264-1

    Chapter  Google Scholar 

  48. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297 (1995). https://doi.org/10.1007/BF00994018

    Article  Google Scholar 

  49. Shrestha, A., Mahmood, A.: Review of deep learning algorithms and architectures. IEEE Access. 7, 53040–53065 (2019). https://doi.org/10.1109/ACCESS.2019.2912200

    Article  Google Scholar 

  50. Tirumala, S.S.: Evolving deep neural networks using coevolutionary algorithms with multi-population strategy. Neural Comput. Appl. 32, 13051–13064 (2020). https://doi.org/10.1007/S00521-020-04749-2

    Article  Google Scholar 

  51. Bowes, D., Hall, T., Gray, D.: Comparing the performance of fault prediction models which report multiple performance measures: Recomputing the confusion matrix. ACM Intl. Conf. Proceed. Series (2012). https://doi.org/10.1145/2365324.2365338

    Article  Google Scholar 

  52. Bisquert, M., Caselles, E., Sánchez, J.M., Caselles, V., Bisquert, M., Caselles, E., Sánchez, J.M., Caselles, V.: Application of artificial neural networks and logistic regression to the prediction of forest fire danger in Galicia using MODIS data. Int. J. Wildland Fire. 21, 1025–1029 (2012). https://doi.org/10.1071/WF11105

    Article  Google Scholar 

  53. Kanakaraja, P., Syam Sundar, P., Vaishnavi, N., Reddy, G.K., Manikanta, Sai, S.: G.: IoT enabled advanced forest fire detecting and monitoring on Ubidots platform. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.02.343

    Article  Google Scholar 

  54. Pundir, A.S., Raman, B.: Dual deep learning model for image based smoke detection. Fire Technol. 55, 2419–2442 (2019). https://doi.org/10.1007/S10694-019-00872-2/FIGURES/11

    Article  Google Scholar 

  55. Peng, Y., Wang, Y.: Real-time forest smoke detection using hand-designed features and deep learning. Comput. Electron. Agric. 167, 105029 (2019). https://doi.org/10.1016/J.COMPAG.2019.105029

    Article  Google Scholar 

  56. Harkat, H., Nascimento, J.M.P., Bernardino, A., Ahmed, H.F.T.: Fire images classification based on a handcraft approach. Expert Syst. Appl. 212, 118594 (2023). https://doi.org/10.1016/J.ESWA.2022.118594

    Article  Google Scholar 

  57. Dogan, S., Datta Barua, P., Kutlu, H., Baygin, M., Fujita, H., Tuncer, T., Acharya, U.R.: Automated accurate fire detection system using ensemble pretrained residual network. Expert Syst. Appl. 203, 117407 (2022). https://doi.org/10.1016/J.ESWA.2022.117407

    Article  Google Scholar 

  58. KUKUK, S.B., KİLİMCİ, Z.H.: Comprehensive Analysis of Forest Fire detection using Deep Learning Models and Conventional Machine Learning Algorithms. Int. J. Comput. Experimental Sci. Eng. 7, 84–94 (2021). https://doi.org/10.22399/IJCESEN.950045

    Article  Google Scholar 

  59. Qi, M., Chen, B.: Forest Fire Detection Algorithm based on aerial image. Lecture Notes in Electrical Engineering.  vol 854 . 465–472 (2022). https://doi.org/10.1007/978-981-16-9423-3_58/COVER

Download references

Acknowledgements

Author would like to thank Khan and Hassan [43] to provide the public forest fire dataset.

Author information

Authors and Affiliations

Authors

Contributions

KA: Conceptualization, data curation, validation, experiments, writing—review & editing, supervision.

Corresponding author

Correspondence to Kemal Akyol.

Ethics declarations

Competing interests

The author declares that he has no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akyol, K. A comprehensive comparison study of traditional classifiers and deep neural networks for forest fire detection. Cluster Comput 27, 1201–1215 (2024). https://doi.org/10.1007/s10586-023-04003-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-023-04003-z

Keywords

Navigation