Skip to main content
Log in

A JAYA algorithm based on normal clouds for DNA sequence optimization

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

DNA computing is one of the more popular computational methods currently studied, but the requirements for nucleic acid molecules in DNA sequences are high, and it is an important challenge to design reasonable and high-quality DNA sequences while satisfying various constraints. Evolutionary algorithms have good applications in DNA sequence optimization problems, but they still have some limitations. To this end, this paper proposes a JAYA algorithm based on normal clouds, referred to as IJAYA, which uses a combinatorial learning approach to update the optimal and worst positions, which is used to manipulate the subsequent merit search means, and then enhances the local search ability of individuals through the normal cloud model, and finally rejects the worst solutions through a harmony search algorithm to find more reasonable and high-quality solutions. The validity of IJAYA is verified in six benchmark functions, in comparison with multiple variants of JAYA and two statistical tests. In the DNA sequence design optimization problem, the average DNA metrics optimized by IJAYA are: 0 (Continuity), 0 (Hairpin), 59.43 (H-measure), 46.57 (Similarity) and 63.79 (Similarity). The feasibility and practicality of IJAYA was verified by comparing it with the solution algorithms proposed in recent years and ablation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)

    Article  Google Scholar 

  2. Braich, R.S., Chelyapov, N., Johnson, C., et al.: Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296(5567), 499–502 (2002). https://doi.org/10.1126/science.1069528

    Article  Google Scholar 

  3. Mehdizadeh, K., Nekoui, M.A., Sabahi, K., Akbarimajd, A.: A modified DNA-computing algorithm to solve TSP. In: 2006 IEEE International Conference on Mechatronics, Budapest, Hungary, pp. 65–68 (2006). https://doi.org/10.1109/ICMECH.2006.252498.

  4. Liang, Z., Qin, Q., Zhou, C., et al.: Medical image encryption algorithm based on a new five-dimensional three-leaf chaotic system and genetic operation. PLoS ONE 16(11), e0260014 (2021). https://doi.org/10.1371/journal.pone.0260014

    Article  Google Scholar 

  5. Yang, J., Wu, R., Li, Y., et al.: Entropy-driven DNA logic circuits regulated by DNAzyme. Nucleic Acids Res. 46(16), 8532–8541 (2018). https://doi.org/10.1093/nar/gky663

  6. Kai ZHANG, Bin Chen, Zhiwei Xu. A Multiobjective Evolution Strategy Algorithm for DNA Sequence Design. Journal of Electronics & Information Technology, 2020, 42(6): 1365–1373.

  7. Chaves-González, J.M., Vega-Rodríguez, M.A.: A multiobjective approach based on the behavior of fireflies to generate reliable DNA sequences for molecular computing. Appl. Math. Comput. 227, 291–308 (2014). https://doi.org/10.1016/j.amc.2013.11.032

    Article  MathSciNet  Google Scholar 

  8. Liang, Z., Qin, Q., Zhou, C.: An image encryption algorithm based on Fibonacci Q-matrix and genetic algorithm. Neural Comput. Appl. (2022). https://doi.org/10.1007/s00521-022-07493-x

  9. Zhu D, Xie L, Zhou C. K-Means Segmentation of Underwater Image Based on Improved Manta Ray Algorithm. Computational Intelligence and Neuroscience, 2022, 2022. https://doi.org/10.1155/2022/4587880

  10. Ouyang C, Zhu D, Wang F. A learning sparrow search algorithm. Computational intelligence and neuroscience, 2021, 2021. https://doi.org/10.1155/2021/3946958

  11. Yin, Q., Cao, B., Li, X., et al.: An intelligent optimization algorithm for constructing a DNA storage code: NOL-HHO. Int. J. Mol. Sci. 21(6), 2191 (2020). https://doi.org/10.3390/ijms21062191

  12. Teshnehlab M. A Self-adaptive Binary Cat Swarm Optimization Using New Time-Varying Transfer Function for Gene Selection in DNA Microarray Expression Cancer Data. 2022. https://doi.org/10.21203/rs.3.rs-1010398/v1

  13. Wang X, Li Y. Chaotic image encryption algorithm based on hybrid multi-objective particle swarm optimization and DNA sequence. Optics and Lasers in Engineering, 2021, 137: 106393. https://doi.org/10.1016/j.optlaseng.2020.106393

  14. Xiao, J., Xu, J., Chen, Z., et al.: A hybrid quantum chaotic swarm evolutionary algorithm for DNA encoding. Comput. Math. Appl. 57(11–12), 1949–1958 (2009). https://doi.org/10.1016/j.camwa.2008.10.021

    Article  Google Scholar 

  15. Xiao, J., Cheng, Z.: A multi-swarm particle swarm optimization to solve DNA encoding in DNA computation. J. Comput. Theor. Nanosci. 10(5), 1129–1136 (2013). https://doi.org/10.1166/jctn.2013.2818

    Article  Google Scholar 

  16. Ibrahim Z, Khalid NK, Mukred J A A, et al. A DNA sequence design for DNA computation based on binary vector evaluated particle swarm optimization. International Journal of Unconventional Computing, 2012, 8(2): 119–137. http://eprints.um.edu.my/id/eprint/6128

  17. Yang, G., et al.: IWO algorithm based on niche crowding for DNA sequence design. Interdisciplinary Sci. Comput. Life Sci. 9(3), 341–349 (2017). https://doi.org/10.1007/s12539-016-0160-0

  18. Liu, K., et al.: A BPSON algorithm applied to DNA codes design. IEEE Access 7 (2019): 88811–88821. https://doi.org/10.1109/ACCESS.2019.2924708

  19. Bano, Shah, Maryam Bashir, and Irfan Younas. "A Many-Objective Memetic Generalized Differential Evolution Algorithm for DNA Sequence Design. "IEEE Access 8 (2020): 222684–222699. https://doi.org/10.1109/ACCESS.2020.3040752

  20. Yao Y, Ren J, Bi R, et al. Bacterial Foraging Algorithm Based on Activity of Bacteria for DNA Computing Sequence Design. IEEE Access, 2020, 9: 2110–2124. https://doi.org/10.1109/ACCESS.2020.3047469

  21. Rao R. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, 2016, 7(1): 19–34. https://doi.org/10.5267/j.ijiec.2015.8.004

  22. Zitar R A, Al-Betar M A, Awadallah M A, et al. An intensive and comprehensive overview of JAYA algorithm, its versions and applications. Archives of Computational Methods in Engineering, 2021: 1–30. https://doi.org/10.1007/s11831-021-09585-8

  23. Wang, M., Abdalla, M.A.A.: Optimal Energy Scheduling Based on Jaya Algorithm for Integration of Vehicle-to-Home and Energy Storage System with Photovoltaic Generation in Smart Home. Sensors 22(4), 1306 (2022). https://doi.org/10.3390/s22041306

    Article  Google Scholar 

  24. Hussain, S., Mustafa, M.W., Ateyeh Al-Shqeerat, K.H., et al.: Electric theft detection in advanced metering infrastructure using Jaya optimized combined Kernel-Tree boosting classifier-A novel sequentially executed supervised machine learning approach. IET Gener. Transm. Distrib. 16(6), 1257–1275 (2022). https://doi.org/10.1049/gtd2.12386

    Article  Google Scholar 

  25. Goudarzi H G, Yousefi B, Rezvani M, et al. Adaptive WADC scheme for damping inter-area oscillation based on Jaya optimization algorithm in the presence of variable time latencies from WAMS data. International Transactions on Electrical Energy Systems, 2021, 31(12): e13234. https://doi.org/10.1002/2050-7038.13234

  26. Chandrashekarappa, M.P.G., Chate, G.R., Parashivamurthy, V., et al.: Analysis and optimization of dimensional accuracy and porosity of high impact polystyrene material printed by FDM process: PSO, JAYA, Rao, and Bald Eagle Search Algorithms. Materials 14(23), 7479 (2021). https://doi.org/10.3390/ma14237479

    Article  Google Scholar 

  27. Gajghate, P.W., Mirajkar, A.B.: Irrigation pipe distribution network optimization with Jaya Algorithm: a hybrid approach. Water Supply 21(7), 3570–3583 (2021). https://doi.org/10.2166/ws.2021.122

    Article  Google Scholar 

  28. Zhou J, Qiu Y, Khandelwal M, et al. (2021). Developing a hybrid model of Jaya algorithm-based extreme gradient boosting machine to estimate blast-induced ground vibrations. Int. J. Rock Mech. Mining Sci 145:104856. Doi: https://doi.org/10.1016/j.ijrmms.2021.104856

  29. Gupta, S., Kumar, N., Srivastava, L.: An efficient Jaya algorithm with Powell’s Pattern Search for optimal power flow incorporating distributed generation. Energy Sources Part B 16(8), 759–786 (2021). https://doi.org/10.1080/15567249.2021.1942595

    Article  Google Scholar 

  30. Kang, F., Wu, Y., Li, J., et al.: Dynamic parameter inverse analysis of concrete dams based on Jaya algorithm with Gaussian processes surrogate model. Adv. Eng. Inform. 49, 101348 (2021). https://doi.org/10.1016/j.aei.2021.101348

    Article  Google Scholar 

  31. Zhao, W., Yang, W.: Predicting and optimizing the soil-water characteristic curve parameters with limited data using the performance guided jaya algorithm. Environ. Process. 8(3), 1231–1248 (2021). https://doi.org/10.1007/s40710-021-00517-z

    Article  Google Scholar 

  32. Majji, R., Nalinipriya, G., Vidyadhari, C., et al.: Jaya Ant lion optimization-driven Deep recurrent neural network for cancer classification using gene expression data. Med. Biol. Eng. Comput. 59(5), 1005–1021 (2021). https://doi.org/10.1007/s11517-021-02350-w

    Article  Google Scholar 

  33. Sharma, G., Krishnan, N., Arya, Y., et al.: Impact of ultracapacitor and redox flow battery with JAYA optimization for frequency stabilization in linked photovoltaic-thermal system. Int. Trans. Electr. Energy Syst. 31(5), 883 (2021). https://doi.org/10.1002/2050-7038.12883

    Article  Google Scholar 

  34. Veeramsetty V, Chintham V, DM VK (2021) Locational marginal price computation in radial distribution system using Self Adaptive Levy Flight based JAYA Algorithm and game theory. International Journal of Emerging Electric Power Systems 22(2): 215–231. Doi: https://doi.org/10.1515/ijeeps-2020-0236

  35. Prathibanandhi, K., Yaashuwanth, C., Basha, A.R.: Improved torque performance in BLDC-motor-drive through Jaya optimization implemented on Xilinx platform. Microprocess Microsyst 81, 103681 (2021). https://doi.org/10.1016/j.micpro.2020.103681

    Article  Google Scholar 

  36. Zhao, F., Zhang, H., Wang, L., et al.: A surrogate-assisted Jaya algorithm based on optimal directional guidance and historical learning mechanism. Eng. Appl. Artif. Intell. 111, 104775 (2022). https://doi.org/10.1016/j.engappai.2022.104775

    Article  Google Scholar 

  37. Ding, Z.H., Lu, Z.R., Chen, F.X.: Parameter identification for a three-dimensional aerofoil system considering uncertainty by an enhanced Jaya algorithm. Eng. Optim. 54(3), 450–470 (2022). https://doi.org/10.1080/0305215X.2021.1872558

    Article  Google Scholar 

  38. Guha, D., Roy, P.K., Banerjee, S.: Quasi-oppositional JAYA optimized 2-degree-of-freedom PID controller for load-frequency control of interconnected power systems. Int. J. Model. Simul. 42(1), 63–85 (2022). https://doi.org/10.1080/02286203.2020.1829444

    Article  Google Scholar 

  39. Saadaoui, D., Elyaqouti, M., Assalaou, K., et al.: Multiple learning JAYA algorithm for parameters identifying of photovoltaic models. Mater. Today 52, 108–123 (2022). https://doi.org/10.1016/j.matpr.2021.11.106

    Article  Google Scholar 

  40. Zhang, Y., Chi, A., Mirjalili, S.: Enhanced Jaya algorithm: a simple but efficient optimization method for constrained engineering design problems. Knowl-Based Syst. 233, 7555 (2021). https://doi.org/10.1016/j.knosys.2021.107555

    Article  Google Scholar 

  41. Xie, Z., Zhang, C., Ouyang, H., et al.: Self-adaptively commensal learning-based Jaya algorithm with multi-populations and its application. Soft. Comput. 25(24), 15163–15181 (2021). https://doi.org/10.1007/s00500-021-06445-2

    Article  Google Scholar 

  42. Zhao, F., Ma, R., Wang, L.: A self-learning discrete jaya algorithm for multiobjective energy-efficient distributed no-idle flow-shop scheduling problem in heterogeneous factory system. IEEE Trans. Cybernetics (2021). https://doi.org/10.1109/TCYB.2021.3086181

    Article  Google Scholar 

  43. Tefek, M.F., Beşkirli, M.: JayaL: a novel Jaya algorithm based on elite local search for optimization problems. Arab. J. Sci. Eng. 46(9), 8925–8952 (2021). https://doi.org/10.1007/s13369-021-05677-6

    Article  Google Scholar 

  44. Migallón, H., Jimeno-Morenilla, A., Rico, H., et al.: Multi-level parallel chaotic Jaya optimization algorithms for solving constrained engineering design problems. J. Supercomput. 77(11), 12280–12319 (2021). https://doi.org/10.1007/s11227-021-03737-0

    Article  Google Scholar 

  45. Yang, X., Gong, W.: Opposition-based JAYA with population reduction for parameter estimation of photovoltaic solar cells and modules. Appl. Soft Comput. 104, 107218 (2021). https://doi.org/10.1016/j.asoc.2021.107218

    Article  Google Scholar 

  46. Ganesan, A., Santhanam, S.M.: Local neighbourhood edge responsive image descriptor for texture classification using Gaussian mutated JAYA optimization algorithm. Arab. J. Sci. Eng. 46(9), 8151–8170 (2021). https://doi.org/10.1007/s13369-021-05417-w

    Article  Google Scholar 

  47. Nguyen-Van, S., Lieu, Q.X., Xuan-Mung, N., et al.: A new study on optimization of four-bar mechanisms based on a hybrid-combined differential evolution and Jaya algorithm. Symmetry 14(2), 381 (2022). https://doi.org/10.3390/sym14020381

    Article  Google Scholar 

  48. Yu, X., Wu, X., Luo, W.: Parameter identification of photovoltaic models by hybrid adaptive JAYA algorithm. Mathematics 10(2), 183 (2022). https://doi.org/10.3390/math10020183

    Article  Google Scholar 

  49. Welhazi, Y., Guesmi, T., Alshammari, B.M., et al.: A novel hybrid chaotic Jaya and sequential quadratic programming method for robust design of power system stabilizers and static VAR compensator. Energies 15(3), 860 (2022). https://doi.org/10.3390/en15030860

    Article  Google Scholar 

  50. Zhou, J., Shi, S., Cui, Y., et al.: Fault location for multi-source distribution network based on improved chaotic Jaya algorithm. J. Phys. 2095(1), 012016 (2021)

    Google Scholar 

  51. Alshammari, B.M., Farah, A., Alqunun, K., et al.: Robust design of dual-input power system stabilizer using chaotic JAYA algorithm. Energies 14(17), 5294 (2021). https://doi.org/10.3390/en14175294

    Article  Google Scholar 

  52. Gholami, K., Olfat, H., Gholami, J.: An intelligent hybrid JAYA and crow search algorithms for optimizing constrained and unconstrained problems. Soft. Comput. 25(22), 14393–14411 (2021). https://doi.org/10.1007/s00500-021-06205-2

    Article  Google Scholar 

  53. Fan, J., Shen, W., Gao, L., et al.: A hybrid Jaya algorithm for solving flexible job shop scheduling problem considering multiple critical paths. J. Manuf. Syst. 60, 298–311 (2021). https://doi.org/10.1016/j.jmsy.2021.05.018

    Article  Google Scholar 

  54. Venkanna, G., Bharati, D.K.F.: Optimal text document clustering enabled by weighed similarity oriented jaya with grey wolf optimization algorithm. Comput. J. 64(6), 960–972 (2021). https://doi.org/10.1093/comjnl/bxab013

    Article  Google Scholar 

  55. S. P. P., Renjit J. A. Image restoration model using Jaya-Bat optimization-enabled noise prediction map. IET Image Processing, 2021, 15(9): 1926–1939. Doi: https://doi.org/10.1049/ipr2.12162

  56. Li, D.R., Di, K.C., Li, D.Y.: Knowledge representation and uncertainty reasoning in GIS based on cloud models. In: Proceedings of the 9th International Symposium 2000, 3: 3–14.

  57. Peng, H.G., Wang, J.Q.: A multicriteria group decision-making method based on the normal cloud model with Zadeh’s Z-numbers. IEEE Trans. Fuzzy Syst. 26(6), 3246–3260 (2018). https://doi.org/10.1109/TFUZsZ.2018.2816909

    Article  Google Scholar 

  58. Long, W., Jiao, J., Liang, X., et al.: A random opposition-based learning grey wolf optimizer. IEEE Access 7, 113810–113825 (2019). https://doi.org/10.1109/ACCESS.2019.2934994

    Article  Google Scholar 

  59. Pan, J.S., Lv, J.X., Yan, L.J., et al.: Golden eagle optimizer with double learning strategies for 3D path planning of UAV in power inspection. Math. Comput. Simul. 193, 509–532 (2022). https://doi.org/10.1016/j.matcom.2021.10.032

    Article  MathSciNet  Google Scholar 

  60. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001). https://doi.org/10.1177/00375497010760020

    Article  Google Scholar 

  61. Rao, R.V., Saroj, A.: A self-adaptive multi-population based Jaya algorithm for engineering optimization. Swarm Evol. Comput. 37, 1–26 (2017). https://doi.org/10.1016/j.swevo.2017.04.008

    Article  Google Scholar 

  62. Zhang, Y., Jin, Z.: Comprehensive learning Jaya algorithm for engineering design optimization problems. J. Intell. Manuf. 33(5), 1229–1253 (2022). https://doi.org/10.1007/s10845-020-01723-6

    Article  Google Scholar 

  63. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  Google Scholar 

  64. Shin, S.Y., Lee, I.H., Kim, D., et al.: Multiobjective evolutionary optimization of DNA sequences for reliable DNA computing. IEEE Trans. Evol. Comput. 9(2), 143–158 (2005). https://doi.org/10.1109/TEVC.2005.844166

    Article  Google Scholar 

  65. Chaves-Gonzalez, J.M., Vega-Rodriguez, M.A.: DNA strand generation for DNA computing by using a multi-objective differential evolution algorithm. Biosystems 116, 49–64 (2014). https://doi.org/10.1016/j.biosystems.2013.12.005

    Article  Google Scholar 

  66. Li, X., Wang, B., Lv, H., et al.: Constraining DNA sequences with a triplet-bases unpaired. IEEE Trans. NanoBiosci. 19(2), 299–307 (2020). https://doi.org/10.1109/TNB.2020.2971644

    Article  Google Scholar 

  67. Zhu, D., Huang, Z., Xie, L., et al.: Improved particle swarm based on elastic collision for DNA coding optimization design. IEEE Access (2022). https://doi.org/10.1109/ACCESS.2022.3150275

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos.62272418,62102058),Basic public welfare research program of Zhejiang Province(No.LGG18E050011)

Author information

Authors and Affiliations

Authors

Contributions

D.Z. and Z.H. wrote the main manuscript text and S.W. prepared all the figures. L.Z. is responsible for evaluating and organizing the code. C.Z. is responsible for funding and supervision. All authors reviewed the manuscript.

Corresponding author

Correspondence to Changjun Zhou.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 55 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Wang, S., Huang, Z. et al. A JAYA algorithm based on normal clouds for DNA sequence optimization. Cluster Comput 27, 2133–2149 (2024). https://doi.org/10.1007/s10586-023-04083-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-023-04083-x

Keywords

Navigation