Abstract
The Squirrel Search Algorithm (SSA) is an innovative optimization method that takes inspiration from the foraging and gliding behavior of squirrels. Despite its simple structure and stable performance, it is prone to the same issues as other algorithms, such as falling into local optima and experiencing premature convergence. To address this problem, this paper proposes an improved squirrel search algorithm embedded with the Sine Cosine Algorithm (SCSSA). Firstly, the Sine Cosine Algorithm is introduced into the SSA to enhance its local exploitation ability. Secondly, the Sobol sequence is utilized to generate the initial population, resulting in higher quality initial solutions. Thirdly, dimensional learning is applied to squirrels on both hickory and oak trees, promoting population diversity and preventing local optima. Finally, the glide constant Gc in SSA is adjusted to decay nonlinearly with iteration count, starting with a large value that gradually decreases in the early stage to facilitate global exploration, and then rapidly decreasing in the later stage to promote local exploitation. Extensive experiments are conducted on 23 classic benchmark functions, the CEC2017 test set, and three engineering problems. The experimental results show that SCSSA can effectively maintain population diversity and can achieve a balance between exploration and exploitation. It consistently outperforms the comparison algorithms in terms of numerical optimization and convergence rate.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10586-023-04172-x/MediaObjects/10586_2023_4172_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10586-023-04172-x/MediaObjects/10586_2023_4172_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10586-023-04172-x/MediaObjects/10586_2023_4172_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10586-023-04172-x/MediaObjects/10586_2023_4172_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10586-023-04172-x/MediaObjects/10586_2023_4172_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10586-023-04172-x/MediaObjects/10586_2023_4172_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10586-023-04172-x/MediaObjects/10586_2023_4172_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10586-023-04172-x/MediaObjects/10586_2023_4172_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10586-023-04172-x/MediaObjects/10586_2023_4172_Fig9_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10586-023-04172-x/MediaObjects/10586_2023_4172_Fig10_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10586-023-04172-x/MediaObjects/10586_2023_4172_Fig11_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10586-023-04172-x/MediaObjects/10586_2023_4172_Fig12_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10586-023-04172-x/MediaObjects/10586_2023_4172_Fig13_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10586-023-04172-x/MediaObjects/10586_2023_4172_Fig14_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10586-023-04172-x/MediaObjects/10586_2023_4172_Fig15_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10586-023-04172-x/MediaObjects/10586_2023_4172_Fig16_HTML.png)
Similar content being viewed by others
Data availability
Data will be made available on reasonable request.
References
Marouani, H., Al-mutiri, O.: Optimization of reliability-redundancy allocation problems: A review of the evolutionary algorithms. Comput. Mater. Continua 71(1), 537–571 (2022)
Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., Cosar, A.: A survey on new generation metaheuristic algorithms. Comput. Ind. Eng. 137, 106040 (2019)
Li, M., Xu, G., Fu, B., Zhao, X.: Whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy. J. Supercomput. 78(5), 6090–6120 (2022)
Jia, H., Lang, C., Oliva, D., Song, W., Peng, X.: Dynamic Harris hawks optimization with mutation mechanism for satellite image segmentation. Remote Sens. 11(12), 1421 (2019)
Liang, H., Zou, J., Zuo, K., Khan, M.J.: An improved genetic algorithm optimization fuzzy controller applied to the wellhead back pressure control system. Mech. Syst. Signal Process. 142, 106708 (2020)
Pan, J.-S., Song, P.-C., Chu, S.-C., Peng, Y.-J.: Improved compact cuckoo search algorithm applied to location of drone logistics hub. Mathematics 8(3), 333 (2020)
Machairas, V., Tsangrassoulis, A., Axarli, K.: Algorithms for optimization of building design: A review. Renew. Sustain. Energy Rev. 31, 101–112 (2014)
Huang, Y., Ying, J.J.-C., Yu, P.S., Tseng, V.S.: Dynamic graph mining for multi-weight multi-destination route planning with deadlines constraints. ACM Trans. Knowl. Discov. Data 15(1), 1–32 (2020)
Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)
Gharehchopogh, F.S.: Quantum-inspired metaheuristic algorithms: Comprehensive survey and classification. Artif. Intell. Rev. 56, 1–65 (2022)
Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)
Whigham, P.A. et al.: Grammatically-based genetic programming. In: Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications, vol. 16, pp. 33–41. Citeseer (1995)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 95-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)
Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)
Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)
Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A.A., Al-Qaness, M.A., Gandomi, A.H.: Aquila optimizer: A novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 157, 107250 (2021)
Zamani, H., Nadimi-Shahraki, M.H., Gandomi, A.H.: Starling murmuration optimizer: A novel bio-inspired algorithm for global and engineering optimization. Comput. Methods Appl. Mech. Eng. 392, 114616 (2022)
Zamani, H., Nadimi-Shahraki, M.H., Gandomi, A.H.: Qana: Quantum-based avian navigation optimizer algorithm. Eng. Appl. Artif. Intell. 104, 104314 (2021)
Abualigah, L., Elaziz, M.A., Khasawneh, A.M., Alshinwan, M., Ibrahim, R.A., Al-Qaness, M.A., Mirjalili, S., Sumari, P., Gandomi, A.H.: Meta-heuristic optimization algorithms for solving real-world mechanical engineering design problems: A comprehensive survey, applications, comparative analysis, and results. Neural Comput. App. 1–30 (2022)
Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)
Eskandar, H., Sadollah, A., Bahreininejad, A., Hamdi, M.: Water cycle algorithm—A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 110, 151–166 (2012)
Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: Gsa: A gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)
Erol, O.K., Eksin, I.: A new optimization method: Big bang-big crunch. Adv. Eng. Softw. 37(2), 106–111 (2006)
Eltamaly, A.M., Rabie, A.H.: A novel musical chairs optimization algorithm. Arab. J. Sci. Eng. 1–33 (2023)
Wei, T., Wang, S., Zhong, J., Liu, D., Zhang, J.: A review on evolutionary multitask optimization: Trends and challenges. IEEE Trans. Evol. Comput. 26(5), 941–960 (2022). https://doi.org/10.1109/TEVC.2021.3139437
Jain, M., Singh, V., Rani, A.: A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm Evol. Comput. 44, 148–175 (2019)
Liu, Z., Zhang, F., Wang, X., Zhao, Q., Zhang, C., Liu, T., Zhang, B.: A discrete squirrel search optimization based algorithm for bi-objective tsp. Wireless Netw. 1–15 (2021)
Lenin, K.: Real power loss reduction by duponchelia fovealis optimization and enriched squirrel search optimization algorithms. Soft. Comput. 24(23), 17863–17873 (2020)
Sakthivel, V., Sathya, P.: Multi-area economic environmental dispatch using multi-objective squirrel search algorithm. Evol. Syst. 13(2), 183–199 (2022)
Zhang, X., Zhao, K., Wang, L., Wang, Y., Niu, Y.: An improved squirrel search algorithm with reproductive behavior. IEEE Access 8, 101118–101132 (2020)
Zheng, T., Luo, W.: An improved squirrel search algorithm for optimization. Complexity 2019 (2019)
Ishwarya, K., Nithya, A.A.: Squirrel search optimization with deep convolutional neural network for human pose estimation. Comput. Mater. Continua 74(3), 6081–6099 (2023)
Cao, H., Zheng, H., Hu, G.: The optimal multi-degree reduction of ball bézier curves using an improved squirrel search algorithm. Eng. Comput. 1–24 (2021)
El-Kenawy, E.-S.M., Mirjalili, S., Ibrahim, A., Alrahmawy, M., El-Said, M., Zaki, R.M., Eid, M.M.: Advanced meta-heuristics, convolutional neural networks, and feature selectors for efficient Covid-19 x-ray chest image classification. IEEE Access 9, 36019–36037 (2021)
Jena, B., Naik, M.K., Wunnava, A., Panda, R.: A Differential Squirrel Search Algorithm, pp. 143–152. Springer (2021)
Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)
Walia, G.S., Singh, N., Singh, S.: An fusion of whale and sine cosine algorithms for solving optimization functions (2020)
Nadimi-Shahraki, M.H., Zamani, H., Fatahi, A., Mirjalili, S.: MFO-SFR: An enhanced moth-flame optimization algorithm using an effective stagnation finding and replacing strategy. Mathematics 11(4), 862 (2023)
Mirjalili, S.: SCA: A sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 96, 120–133 (2016)
Xiang, Z., Zhou, G., Zhou, Y., Luo, Q.: Golden sine cosine salp swarm algorithm for shape matching using atomic potential function. Expert. Syst. 39(2), 12854 (2022)
Junaid, M., Bangyal, W.H., Ahmad, J.: A novel bat algorithm using sobol sequence for the initialization of population. In: 2020 IEEE 23rd International Multitopic Conference (INMIC), pp. 1–6. IEEE (2020)
Xu, G., Cui, Q., Shi, X., Ge, H., Zhan, Z.-H., Lee, H.P., Liang, Y., Tai, R., Wu, C.: Particle swarm optimization based on dimensional learning strategy. Swarm Evol. Comput. 45, 33–51 (2019)
Zeng, L., Li, M., Shi, J., Wang, S.: Spiral Aquila optimizer based on dynamic gaussian mutation: Applications in global optimization and engineering. Neural Process. Lett. 1–47 (2023)
Cengz, E., Yilmaz, C., Kahraman, H., Suçmez, Ç.: Improved runge kutta optimizer with fitness distance balance-based guiding mechanism for global optimization of high-dimensional problems. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 9(6), 135–149 (2021)
Abdollahzadeh, B., Soleimanian Gharehchopogh, F., Mirjalili, S.: Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems. Int. J. Intell. Syst. 36(10), 5887–5958 (2021)
Meirelles, G., Brentan, B., Izquierdo, J., Luvizotto, E., Jr.: Grand tour algorithm: Novel swarm-based optimization for high-dimensional problems. Processes 8(8), 980 (2020)
Khishe, M., Nezhadshahbodaghi, M., Mosavi, M.R., Martín, D.: A weighted chimp optimization algorithm. IEEE Access 9, 158508–158539 (2021)
Abdollahzadeh, B., Gharehchopogh, F.S., Mirjalili, S.: African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 158, 107408 (2021)
Sharma, S., Kapoor, R., Dhiman, S.: A novel hybrid metaheuristic based on augmented grey wolf optimizer and cuckoo search for global optimization. In: 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC), pp. 376–381. IEEE (2021)
Kaur, R., Singh, D., et al.: Dimension learning based chimp optimizer for energy efficient wireless sensor networks. Sci. Rep. 12(1), 1–28 (2022)
Sadiq, A.S., Dehkordi, A.A., Mirjalili, S., Pham, Q.-V.: Nonlinear marine predator algorithm: A cost-effective optimizer for fair power allocation in NOMA-VLC-b5g networks. Expert Syst. Appl. 203, 117395 (2022)
Naik, M.K., Panda, R., Abraham, A.: Adaptive opposition slime mould algorithm. Soft. Comput. 25(22), 14297–14313 (2021)
Mohamed, A.W., Hadi, A.A., Fattouh, A.M., Jambi, K.M.: Lshade with semi-parameter adaptation hybrid with cma-es for solving cec 2017 benchmark problems. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 145–152. IEEE (2017)
Yang, X.-S., Deb, S.: Engineering optimisation by cuckoo search. arXiv preprint arXiv:1005.2908 (2010)
Khishe, M., Mosavi, M.R.: Chimp optimization algorithm. Expert Syst. Appl. 149, 113338 (2020)
Faramarzi, A., Heidarinejad, M., Mirjalili, S., Gandomi, A.H.: Marine predators algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 152, 113377 (2020)
Li, S., Chen, H., Wang, M., Heidari, A.A., Mirjalili, S.: Slime mould algorithm: A new method for stochastic optimization. Futur. Gener. Comput. Syst. 111, 300–323 (2020)
Tanabe, R., Fukunaga, A.S.: Improving the search performance of shade using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665. IEEE (2014)
Acknowledgements
This work was in part supported by the Key Research and Development Project of Hubei Province (No. 2020BAB114), the Key Project of Science and Technology Research Program of Hubei Educational Committee (No. D20211402), and the Project of Xiangyang Industrial Research Institute of Hubei University of Technology (No. XYYJ2022C04).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zeng, L., Shi, J., Li, M. et al. Sine Cosine Embedded Squirrel Search Algorithm for Global Optimization and Engineering Design. Cluster Comput 27, 4415–4448 (2024). https://doi.org/10.1007/s10586-023-04172-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-023-04172-x