Skip to main content
Log in

Sine Cosine Embedded Squirrel Search Algorithm for Global Optimization and Engineering Design

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The Squirrel Search Algorithm (SSA) is an innovative optimization method that takes inspiration from the foraging and gliding behavior of squirrels. Despite its simple structure and stable performance, it is prone to the same issues as other algorithms, such as falling into local optima and experiencing premature convergence. To address this problem, this paper proposes an improved squirrel search algorithm embedded with the Sine Cosine Algorithm (SCSSA). Firstly, the Sine Cosine Algorithm is introduced into the SSA to enhance its local exploitation ability. Secondly, the Sobol sequence is utilized to generate the initial population, resulting in higher quality initial solutions. Thirdly, dimensional learning is applied to squirrels on both hickory and oak trees, promoting population diversity and preventing local optima. Finally, the glide constant Gc in SSA is adjusted to decay nonlinearly with iteration count, starting with a large value that gradually decreases in the early stage to facilitate global exploration, and then rapidly decreasing in the later stage to promote local exploitation. Extensive experiments are conducted on 23 classic benchmark functions, the CEC2017 test set, and three engineering problems. The experimental results show that SCSSA can effectively maintain population diversity and can achieve a balance between exploration and exploitation. It consistently outperforms the comparison algorithms in terms of numerical optimization and convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Marouani, H., Al-mutiri, O.: Optimization of reliability-redundancy allocation problems: A review of the evolutionary algorithms. Comput. Mater. Continua 71(1), 537–571 (2022)

    Google Scholar 

  2. Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., Cosar, A.: A survey on new generation metaheuristic algorithms. Comput. Ind. Eng. 137, 106040 (2019)

    Google Scholar 

  3. Li, M., Xu, G., Fu, B., Zhao, X.: Whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy. J. Supercomput. 78(5), 6090–6120 (2022)

    Google Scholar 

  4. Jia, H., Lang, C., Oliva, D., Song, W., Peng, X.: Dynamic Harris hawks optimization with mutation mechanism for satellite image segmentation. Remote Sens. 11(12), 1421 (2019)

    Google Scholar 

  5. Liang, H., Zou, J., Zuo, K., Khan, M.J.: An improved genetic algorithm optimization fuzzy controller applied to the wellhead back pressure control system. Mech. Syst. Signal Process. 142, 106708 (2020)

    Google Scholar 

  6. Pan, J.-S., Song, P.-C., Chu, S.-C., Peng, Y.-J.: Improved compact cuckoo search algorithm applied to location of drone logistics hub. Mathematics 8(3), 333 (2020)

    Google Scholar 

  7. Machairas, V., Tsangrassoulis, A., Axarli, K.: Algorithms for optimization of building design: A review. Renew. Sustain. Energy Rev. 31, 101–112 (2014)

    Google Scholar 

  8. Huang, Y., Ying, J.J.-C., Yu, P.S., Tseng, V.S.: Dynamic graph mining for multi-weight multi-destination route planning with deadlines constraints. ACM Trans. Knowl. Discov. Data 15(1), 1–32 (2020)

    Google Scholar 

  9. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)

    Google Scholar 

  10. Gharehchopogh, F.S.: Quantum-inspired metaheuristic algorithms: Comprehensive survey and classification. Artif. Intell. Rev. 56, 1–65 (2022)

    Google Scholar 

  11. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Google Scholar 

  12. Whigham, P.A. et al.: Grammatically-based genetic programming. In: Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications, vol. 16, pp. 33–41. Citeseer (1995)

  13. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 95-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

  14. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)

    Google Scholar 

  15. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Google Scholar 

  16. Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A.A., Al-Qaness, M.A., Gandomi, A.H.: Aquila optimizer: A novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 157, 107250 (2021)

    Google Scholar 

  17. Zamani, H., Nadimi-Shahraki, M.H., Gandomi, A.H.: Starling murmuration optimizer: A novel bio-inspired algorithm for global and engineering optimization. Comput. Methods Appl. Mech. Eng. 392, 114616 (2022)

    MathSciNet  Google Scholar 

  18. Zamani, H., Nadimi-Shahraki, M.H., Gandomi, A.H.: Qana: Quantum-based avian navigation optimizer algorithm. Eng. Appl. Artif. Intell. 104, 104314 (2021)

    Google Scholar 

  19. Abualigah, L., Elaziz, M.A., Khasawneh, A.M., Alshinwan, M., Ibrahim, R.A., Al-Qaness, M.A., Mirjalili, S., Sumari, P., Gandomi, A.H.: Meta-heuristic optimization algorithms for solving real-world mechanical engineering design problems: A comprehensive survey, applications, comparative analysis, and results. Neural Comput. App. 1–30 (2022)

  20. Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    MathSciNet  Google Scholar 

  21. Eskandar, H., Sadollah, A., Bahreininejad, A., Hamdi, M.: Water cycle algorithm—A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 110, 151–166 (2012)

    Google Scholar 

  22. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: Gsa: A gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Google Scholar 

  23. Erol, O.K., Eksin, I.: A new optimization method: Big bang-big crunch. Adv. Eng. Softw. 37(2), 106–111 (2006)

    Google Scholar 

  24. Eltamaly, A.M., Rabie, A.H.: A novel musical chairs optimization algorithm. Arab. J. Sci. Eng. 1–33 (2023)

  25. Wei, T., Wang, S., Zhong, J., Liu, D., Zhang, J.: A review on evolutionary multitask optimization: Trends and challenges. IEEE Trans. Evol. Comput. 26(5), 941–960 (2022). https://doi.org/10.1109/TEVC.2021.3139437

    Article  Google Scholar 

  26. Jain, M., Singh, V., Rani, A.: A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm Evol. Comput. 44, 148–175 (2019)

    Google Scholar 

  27. Liu, Z., Zhang, F., Wang, X., Zhao, Q., Zhang, C., Liu, T., Zhang, B.: A discrete squirrel search optimization based algorithm for bi-objective tsp. Wireless Netw. 1–15 (2021)

  28. Lenin, K.: Real power loss reduction by duponchelia fovealis optimization and enriched squirrel search optimization algorithms. Soft. Comput. 24(23), 17863–17873 (2020)

    Google Scholar 

  29. Sakthivel, V., Sathya, P.: Multi-area economic environmental dispatch using multi-objective squirrel search algorithm. Evol. Syst. 13(2), 183–199 (2022)

    Google Scholar 

  30. Zhang, X., Zhao, K., Wang, L., Wang, Y., Niu, Y.: An improved squirrel search algorithm with reproductive behavior. IEEE Access 8, 101118–101132 (2020)

    Google Scholar 

  31. Zheng, T., Luo, W.: An improved squirrel search algorithm for optimization. Complexity 2019 (2019)

  32. Ishwarya, K., Nithya, A.A.: Squirrel search optimization with deep convolutional neural network for human pose estimation. Comput. Mater. Continua 74(3), 6081–6099 (2023)

    Google Scholar 

  33. Cao, H., Zheng, H., Hu, G.: The optimal multi-degree reduction of ball bézier curves using an improved squirrel search algorithm. Eng. Comput. 1–24 (2021)

  34. El-Kenawy, E.-S.M., Mirjalili, S., Ibrahim, A., Alrahmawy, M., El-Said, M., Zaki, R.M., Eid, M.M.: Advanced meta-heuristics, convolutional neural networks, and feature selectors for efficient Covid-19 x-ray chest image classification. IEEE Access 9, 36019–36037 (2021)

    Google Scholar 

  35. Jena, B., Naik, M.K., Wunnava, A., Panda, R.: A Differential Squirrel Search Algorithm, pp. 143–152. Springer (2021)

    Google Scholar 

  36. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Google Scholar 

  37. Walia, G.S., Singh, N., Singh, S.: An fusion of whale and sine cosine algorithms for solving optimization functions (2020)

  38. Nadimi-Shahraki, M.H., Zamani, H., Fatahi, A., Mirjalili, S.: MFO-SFR: An enhanced moth-flame optimization algorithm using an effective stagnation finding and replacing strategy. Mathematics 11(4), 862 (2023)

    Google Scholar 

  39. Mirjalili, S.: SCA: A sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 96, 120–133 (2016)

    Google Scholar 

  40. Xiang, Z., Zhou, G., Zhou, Y., Luo, Q.: Golden sine cosine salp swarm algorithm for shape matching using atomic potential function. Expert. Syst. 39(2), 12854 (2022)

    Google Scholar 

  41. Junaid, M., Bangyal, W.H., Ahmad, J.: A novel bat algorithm using sobol sequence for the initialization of population. In: 2020 IEEE 23rd International Multitopic Conference (INMIC), pp. 1–6. IEEE (2020)

  42. Xu, G., Cui, Q., Shi, X., Ge, H., Zhan, Z.-H., Lee, H.P., Liang, Y., Tai, R., Wu, C.: Particle swarm optimization based on dimensional learning strategy. Swarm Evol. Comput. 45, 33–51 (2019)

    Google Scholar 

  43. Zeng, L., Li, M., Shi, J., Wang, S.: Spiral Aquila optimizer based on dynamic gaussian mutation: Applications in global optimization and engineering. Neural Process. Lett. 1–47 (2023)

  44. Cengz, E., Yilmaz, C., Kahraman, H., Suçmez, Ç.: Improved runge kutta optimizer with fitness distance balance-based guiding mechanism for global optimization of high-dimensional problems. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 9(6), 135–149 (2021)

    Google Scholar 

  45. Abdollahzadeh, B., Soleimanian Gharehchopogh, F., Mirjalili, S.: Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems. Int. J. Intell. Syst. 36(10), 5887–5958 (2021)

    Google Scholar 

  46. Meirelles, G., Brentan, B., Izquierdo, J., Luvizotto, E., Jr.: Grand tour algorithm: Novel swarm-based optimization for high-dimensional problems. Processes 8(8), 980 (2020)

    Google Scholar 

  47. Khishe, M., Nezhadshahbodaghi, M., Mosavi, M.R., Martín, D.: A weighted chimp optimization algorithm. IEEE Access 9, 158508–158539 (2021)

    Google Scholar 

  48. Abdollahzadeh, B., Gharehchopogh, F.S., Mirjalili, S.: African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 158, 107408 (2021)

    Google Scholar 

  49. Sharma, S., Kapoor, R., Dhiman, S.: A novel hybrid metaheuristic based on augmented grey wolf optimizer and cuckoo search for global optimization. In: 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC), pp. 376–381. IEEE (2021)

  50. Kaur, R., Singh, D., et al.: Dimension learning based chimp optimizer for energy efficient wireless sensor networks. Sci. Rep. 12(1), 1–28 (2022)

    Google Scholar 

  51. Sadiq, A.S., Dehkordi, A.A., Mirjalili, S., Pham, Q.-V.: Nonlinear marine predator algorithm: A cost-effective optimizer for fair power allocation in NOMA-VLC-b5g networks. Expert Syst. Appl. 203, 117395 (2022)

    Google Scholar 

  52. Naik, M.K., Panda, R., Abraham, A.: Adaptive opposition slime mould algorithm. Soft. Comput. 25(22), 14297–14313 (2021)

    Google Scholar 

  53. Mohamed, A.W., Hadi, A.A., Fattouh, A.M., Jambi, K.M.: Lshade with semi-parameter adaptation hybrid with cma-es for solving cec 2017 benchmark problems. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 145–152. IEEE (2017)

  54. Yang, X.-S., Deb, S.: Engineering optimisation by cuckoo search. arXiv preprint arXiv:1005.2908 (2010)

  55. Khishe, M., Mosavi, M.R.: Chimp optimization algorithm. Expert Syst. Appl. 149, 113338 (2020)

    Google Scholar 

  56. Faramarzi, A., Heidarinejad, M., Mirjalili, S., Gandomi, A.H.: Marine predators algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 152, 113377 (2020)

    Google Scholar 

  57. Li, S., Chen, H., Wang, M., Heidari, A.A., Mirjalili, S.: Slime mould algorithm: A new method for stochastic optimization. Futur. Gener. Comput. Syst. 111, 300–323 (2020)

    Google Scholar 

  58. Tanabe, R., Fukunaga, A.S.: Improving the search performance of shade using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665. IEEE (2014)

Download references

Acknowledgements

This work was in part supported by the Key Research and Development Project of Hubei Province (No. 2020BAB114), the Key Project of Science and Technology Research Program of Hubei Educational Committee (No. D20211402), and the Project of Xiangyang Industrial Research Institute of Hubei University of Technology (No. XYYJ2022C04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanshan Wang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Shi, J., Li, M. et al. Sine Cosine Embedded Squirrel Search Algorithm for Global Optimization and Engineering Design. Cluster Comput 27, 4415–4448 (2024). https://doi.org/10.1007/s10586-023-04172-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-023-04172-x

Keywords

Navigation