Skip to main content
Log in

Multi-strategy improved sparrow search algorithm for job shop scheduling problem

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

As a new swarm intelligence algorithm, sparrow search algorithm (SSA) has the advantages of fewer parameters, simplicity, strong global and local search capability, and has been successfully applied in continuous problem and its engineering applications. Meanwhile, SSA for job shop scheduling problem (JSP) is studied rarely and would arise new problems such as conversion from continuous space to discrete space, falling into local optimum, etc. To address these issues, considering the features of SSA and JSP, the multi-strategy improved sparrow search algorithm (MISSA) is devised to solve minimum makespan of JSP. First, the operation sort based encoding transformation method of SSA for discrete problems is devised. Second, tent chaotic mapping is instead of random generation to initialize sparrow population to expand space of solution. Third, the crossover operation of genetic algorithm is introduced in producers and scroungers positions updating to maintain the population diversity and improve the algorithm search ability. Fourth, the mutation operation of genetic algorithm is adopted in the position update of the vigilance to enhance the local searching capability. Fifth, the simulated annealing algorithm was adopted to avoid the local optimal solution and reach the global best solution. In the end, using 10 classical examples of JSP and one practical scheduling example, comparisons of MISSA with other algorithms are simulated, and the results show that MISSA effectively solves JSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Article data are available upon request.

References

  1. Proth, J.-M.: Scheduling: new trends in industrial environment. Annu. Rev. Control. 31(1), 157–166 (2007)

    Google Scholar 

  2. Werner, F.: A survey of genetic algorithms for shop scheduling problems. In: Heuristics: theory and applications, pp. 161–222. Nova Science Publishers, Newyork (2013)

    Google Scholar 

  3. Zhu, D., Huang, Z., Liao, S., at el.: Improved bare bones particle swarm optimization for DNA sequence design. IEEE Transac. Nanobiosci. (2022). https://doi.org/10.1109/TNB.2022.3220795

    Article  Google Scholar 

  4. Li, H., Gao, K., Duan, P.Y., Li, J.Q., Zhang, L.: An improved artificial bee colony algorithm with $Q$ -learning for solving permutation flow-shop scheduling problems. IEEE Trans. on Syst. Man Cybern.: Syst. 53(5), 2684–2693 (2022)

    Google Scholar 

  5. Cheng, R., Gen, M., Tsujimura, Y.: A tutorial survey of job-shop scheduling problems using genetic algorithms–I. Representation. Comput. Ind. Eng. 30(4), 983–997 (1996)

    Google Scholar 

  6. Cheng, R., Gen, M., Tsujimura, Y.: A tutorial survey of job-shop scheduling problems using genetic algorithms, Part Ii: hybrid genetic search strategies. Comput. Ind. Eng. 36(2), 343–364 (1999)

    Google Scholar 

  7. Zhang, ChaoYong, Li, PeiGen, Guan, ZaiLin, Rao, YunQing: A Tabu Search Algorithm with a new neighborhood structure for the job shop scheduling problem. Comput. Oper. Res. 34(11), 3229–3242 (2007)

    MathSciNet  Google Scholar 

  8. van Laarhoven, P.J.M., Aarts, E.H.L., Lenstra, J.K.: Job shop scheduling by simulated annealing. Oper. Res. 40(1), 113–125 (1992)

    MathSciNet  Google Scholar 

  9. Çaliş, B., Bulkan, S.: A research survey: review of Ai solution strategies of job shop scheduling problem. J. Intell. Manuf. 26(5), 961–973 (2015)

    Google Scholar 

  10. Pan, Y., Gao, K., Li, Z., Wu, N.: Solving biobjective distributed flow-shop scheduling problems with lot-streaming using an improved Jaya algorithm. IEEE Trans. Cybern. 53(6), 1–11 (2022)

    Google Scholar 

  11. Gonçalves, J.F., de Magalhães Mendes, J.J., Resende, M.G.C.: A hybrid genetic algorithm for the job shop scheduling problem. Eur. J. Oper. Res. 167(1), 77–95 (2005)

    MathSciNet  Google Scholar 

  12. Watanabe, M., Ida, K., Gen, M.: A genetic algorithm with modified crossover operator and search area adaptation for the job-shop scheduling problem. Comput. Ind. Eng. 48(4), 743–752 (2005)

    Google Scholar 

  13. Kurdi, M.: An effective new island model genetic algorithm for job shop scheduling problem. Comput. Oper. Res. 67, 132–142 (2016)

    MathSciNet  Google Scholar 

  14. Zhang, G., Yifan, Hu., Sun, J., Zhang, W.: An improved genetic algorithm for the flexible job shop scheduling problem with multiple time constraints. Swarm Evol. Comput. 54, 100664 (2020)

    Google Scholar 

  15. Shen, L.: A Tabu search algorithm for the job shop problem with sequence dependent setup times. Comput. Ind. Eng. 78, 95–106 (2014)

    Google Scholar 

  16. Dabah, A., Bendjoudi, A., AitZai, A., Taboudjemat, N.N.: Efficient parallel tabu search for the blocking job shop scheduling problem. Soft. Comput. 23(24), 13283–13295 (2019)

    Google Scholar 

  17. Kolonko, M.: Some new results on simulated annealing applied to the job shop scheduling problem. Eur. J. Oper. Res. 113(1), 123–136 (1999)

    Google Scholar 

  18. Triki, E., Collette, Y., Siarry, P.: A theoretical study on the behavior of simulated annealing leading to a new cooling schedule. Eur. J. Oper. Res. 166(1), 77–92 (2005)

    MathSciNet  Google Scholar 

  19. Chakraborty, S., Bhowmik, S.: An efficient approach to job shop scheduling problem using simulated annealing. Int. J. Hybrid Inform. Technol. 8(11), 273–284 (2015)

    Google Scholar 

  20. Tamilarasi, A., Anantha Kumar, T.: An enhanced genetic algorithm with simulated annealing for job-shop scheduling. Int. J. Eng. Sci. Technol. 2(1), 144–151 (2010)

    Google Scholar 

  21. Zhang, R.: A simulated annealing-based heuristic algorithm for job shop scheduling to minimize lateness. Int. J. Adv. Rob. Syst. 10(4), 214 (2013)

    Google Scholar 

  22. Alkhateeb, F., Abed-alguni, B.H., Al-rousan, M.H.: Discrete hybrid cuckoo search and simulated annealing algorithm for solving the job shop scheduling problem. J. Supercomput. 78(4), 4799–4826 (2022)

    Google Scholar 

  23. Zhang, R., Cheng, Wu.: A hybrid immune simulated annealing algorithm for the job shop scheduling problem. Appl. Soft Comput. 10(1), 79–89 (2010)

    Google Scholar 

  24. Ma, P.C., Tao, F., Liu, Y.L., Zhang, L., Lu, H.X. and Ding, Z.A.: Hybrid particle swarm optimization and simulated annealing algorithm for job-shop scheduling. Paper presented at the 2014 IEEE International Conference on Automation Science and Engineering (CASE) (2014)

  25. Jamili, A., Shafia, M.A., Tavakkoli-Moghaddam, R.: A hybrid algorithm based on particle swarm optimization and simulated annealing for a periodic job shop scheduling problem. Int. J. Adv. Manuf. Technol. 54, 309–322 (2011)

    Google Scholar 

  26. Wang, B., Xie, H., Xia, X., Zhang, X.: A Nsga-II Algorithm hybridizing local simulated-annealing operators for a bi-criteria robust job-shop scheduling problem under scenarios. IEEE Trans. Fuzzy Syst. 27(5), 1075–1084 (2018)

    Google Scholar 

  27. Gao, K., Cao, Z., Zhang, Le., Chen, Z., Han, Y., Pan, Q.: A review on swarm intelligence and evolutionary algorithms for solving flexible job shop scheduling problems. IEEE/CAA J. Automatica Sinica 6(4), 904–916 (2019)

    Google Scholar 

  28. Zhang, J., Ding, G., Zou, Y., Qin, S., Jianlin, Fu.: Review of job shop scheduling research and its new perspectives under Industry 4.0. J. Intell. Manuf. 30(4), 1809–1830 (2019)

    Google Scholar 

  29. Xiong, H., Shi, S., Ren, D., Jinjin, Hu.: A survey of job shop scheduling problem: the types and models. Comput. Oper. Res. 142, 105731 (2022)

    MathSciNet  Google Scholar 

  30. Xue, J., Shen, B.: A novel swarm intelligence optimization approach: sparrow search algorithm. Syst. Sci. Cont. Eng. 8(1), 22–34 (2020)

    Google Scholar 

  31. Yuan, J., Zhao, Z., Liu, Y., He, B., Wang, L., Xie, B., Gao, Y.: Dmppt control of photovoltaic microgrid based on improved sparrow search algorithm. IEEE Access 9, 16623–16629 (2021)

    Google Scholar 

  32. Wang, H., Xianyu, J.: Optimal configuration of distributed generation based on sparrow search algorithm. IOP Conf. Ser. Earth Environ. Sci. 647(1), 12053 (2021)

    Google Scholar 

  33. Fathy, A., Alanazi, T.M., Rezk, H., Yousri, D.: Optimal energy management of micro-grid using sparrow search algorithm. Energy Rep. 8, 758–773 (2022)

    Google Scholar 

  34. Zhu, Y., Yousefi, N.: Optimal parameter identification of pemfc stacks using adaptive sparrow search algorithm. Int. J. Hydrogen Energy 46(14), 9541–9552 (2021)

    Google Scholar 

  35. Dong, J., Dou, Z., Si, S., Wang, Z., Liu, L.: Optimization of capacity configuration of wind–solar–diesel–storage using improved sparrow search algorithm. J. Electr. Eng. Technol. 17(1), 1–14 (2022)

    Google Scholar 

  36. Wang, P., Zhang, Yu., Yang, H.: Research on economic optimization of microgrid cluster based on chaos sparrow search algorithm. Comput. Int. Neurosci. (2021). https://doi.org/10.1155/2021/5556780

    Article  Google Scholar 

  37. Gai, J., Zhong, K., Xuejiao, Du., Yan, Ke., Shen, J.: Detection of gear fault severity based on parameter-optimized deep belief network using sparrow search algorithm. Meas.: J. Int. Meas. Confed. 185, 110079 (2021)

    Google Scholar 

  38. Tuerxun, W., Chang, Xu., Hongyu, G., Zhijie, J., Huajian, Z.: Fault diagnosis of wind turbines based on a support vector machine optimized by the sparrow search algorithm. IEEE Access 9, 69307–69315 (2021)

    Google Scholar 

  39. Liu, T., Yuan, Z., Li, Wu., Badami, B.: An optimal brain tumor detection by convolutional neural network and enhanced sparrow search algorithm. Proc. Inst. Mech. Eng. H 235(4), 459–469 (2021)

    Google Scholar 

  40. Liu, T., Yuan, Z., Wu, L., Badami, B.: Optimal brain tumor diagnosis based on deep learning and balanced sparrow search algorithm. Int. J. Imaging Syst. Technol. 31(4), 1921–1935 (2021)

    Google Scholar 

  41. Wu, C., Xisong, Fu., Pei, J., Dong, Z.: A novel sparrow search algorithm for the traveling salesman problem. IEEE Access 9, 153456–153471 (2021)

    Google Scholar 

  42. Li, P., Dong, B., Li, S., Chu, R.: A repair method for missing traffic data based on FCM, optimized by the twice grid optimization and sparrow search algorithms. Sensors 22(11), 4304 (2022)

    Google Scholar 

  43. Zhang, Z., He, R., Yang, K.: A bioinspired path planning approach for mobile robots based on improved sparrow search algorithm. Adv. Manuf. 10(1), 114–130 (2022)

    Google Scholar 

  44. Ouyang, C., Zhu, D., Wang, F.: A learning sparrow search algorithm. Comput. Intell. Neurosci. (2021). https://doi.org/10.1155/2021/3946958

    Article  Google Scholar 

  45. Liu, G., Shu, C., Liang, Z., Peng, B., Cheng, L.: A Modified sparrow search algorithm with application in 3D route planning for UAV. Sensors (Basel, Switzerland) 21(4), 1224 (2021)

    Google Scholar 

  46. Ouyang, C., Qiu, Y., Zhu, D.: Adaptive spiral flying sparrow search algorithm. Sci. Program. (2021). https://doi.org/10.1155/2021/6505253

    Article  Google Scholar 

  47. Zhang, G., Zhang, E.: An Improved sparrow search based intelligent navigational algorithm for local path planning of mobile robot. J. Ambient Intell. Humanized Comput. (2022). https://doi.org/10.1007/s12652-022-04115-1

    Article  Google Scholar 

  48. Yan, S., Yang, P., Zhu, D., Zheng, W., Fengxuan, Wu.: Improved sparrow search algorithm based on iterative local search. Comput. Intell. Neurosci. (2021). https://doi.org/10.1155/2021/6860503

    Article  Google Scholar 

  49. Tang, A., Han, T., Dengwu, Xu., Xie, L.: Path planning method of unmanned aerial vehicle based on chaos sparrow search algorithm. J. Comput. Appl. 41(7), 2128 (2021)

    Google Scholar 

  50. Jianhua, L., Zhiheng, W.: A hybrid sparrow search algorithm based on constructing similarity. IEEE Access 9, 117581–117595 (2021)

    Google Scholar 

  51. Yang, X., Liu, J., Liu, Yi., Peng, Xu., Ling, Yu., Zhu, L., Chen, H., Deng, Wu.: A novel adaptive sparrow search algorithm based on chaotic mapping and T-distribution mutation. Appl. Sci. 11(23), 11192 (2021)

    Google Scholar 

  52. Wang, Z., Huang, X., Zhu, D.: A multistrategy-integrated learning sparrow search algorithm and optimization of engineering problems. Comput. Intell. Neurosci. 2022, 1–21 (2022)

    Google Scholar 

  53. Gao, B., Shen, W., Guan, H., Zheng, L., Zhang, W.: Research on multistrategy improved evolutionary sparrow search algorithm and its application. IEEE Access 10, 62520–62534 (2022)

    Google Scholar 

  54. Ma, J., Hao, Z., Sun, W.: Enhancing sparrow search algorithm via multi-strategies for continuous optimization problems. Inf. Process. Manage. 59(2), 102854 (2022)

    Google Scholar 

  55. Ouyang, C., Qiu, Y., Zhu, D.: A multi-strategy improved sparrow search algorithm. J. Phys. Conf. Ser. 1848(1), 12042 (2021)

    Google Scholar 

  56. Gharehchopogh, F.S., Namazi, M., Ebrahimi, L., Abdollahzadeh, B.: Advances in sparrow search algorithm: a comprehensive survey. Arch. Comput. Methods Eng. (2022). https://doi.org/10.1007/s11831-022-09804-w

    Article  Google Scholar 

  57. Liu, L., Nan, X., Shi, Y.: Improved sparrow search algorithm for solving job-shop scheduling problem. Appl. Res. Comput. 38(12), 3634–3639 (2021)

    Google Scholar 

  58. Wang, T., Wu, T.: Research on order scheduling of flow shop based on T-SSA. Comput. Technol. Develop. 31(9), 182–188 (2021)

    Google Scholar 

  59. Umbarkar, A.J., Sheth, P.D.: Crossover operators in genetic algorithms: a review. J. Soft Comput. (2015). https://doi.org/10.21917/ijsc.2015.0150

    Article  Google Scholar 

  60. Hassanat, A., Almohammadi, K., Alkafaween, E.A., Abunawas, E., Hammouri, A., Prasath, V.S.: Choosing mutation and crossover ratios for genetic algorithms—a review with a new dynamic approach. Information 10(12), 390 (2019)

    Google Scholar 

Download references

Funding

This work was supported in part by the Joint fund of national natural Science Foundation of China (U1904167); Science and Technology Research Project of Henan Province (No. 182102210515); Key Scientific Research Projects of Higher Education of Henan Province (No.19A460034).

Author information

Authors and Affiliations

Authors

Contributions

ZL, CZ and DZ wrote the main manuscript text and design software and modelling; GZ is the fund sponsor; LC is supervision. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zhengfeng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhao, C., Zhang, G. et al. Multi-strategy improved sparrow search algorithm for job shop scheduling problem. Cluster Comput 27, 4605–4619 (2024). https://doi.org/10.1007/s10586-023-04200-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-023-04200-w

Keywords

Navigation