Skip to main content

Advertisement

Log in

A privacy preserving quantum authentication scheme for secure data sharing in wireless body area networks

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The wireless body area network (WBAN) has emerged as a promising networking paradigm thanks to embedded systems, integrated circuit technologies, and wireless communications advancements. WBAN has the ability to send real-time biomedical data to remote medical personnel for clinical diagnostics through intelligent medical sensors in or around the patient’s body. Moreover, WBANs have played an increasingly important role in modern medical systems over the past decade as part of the Internet of Things (IoT). In addition to their conveniences, WBANs present us with the data confidentiality challenge and protecting patient’s privacy. The system requires a robust security mechanism to protect against threats because of the massive production of delay-sensitive data. This article presents a quantum key distribution (QKD) protocol-based authentication scheme for secure communication within WBAN infrastructure to prevent attacks and provide services free of security risks. To the best of our knowledge, we proposed a privacy preserving quantum authentication scheme for secure data sharing in WBANs to enhance security by encrypting medical data and safeguarding patients identities. Simulations conducted using Mathematica evaluate the proposed quantum authentication protocol both theoretically and practically, showing strong encryption performance against recent schemes. Results include computational cost of 6.832 ms, communication costs of 588 bits, and energy consumption of 432.98 \(\mu J\) indicating the proposed quantum authentication protocol model exhibits superior reliability, feasibility, and efficiency in safeguarding WBAN data during transmission and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Zimmerman, Thoams Guthrie: Personal area networks: near-field intrabody communication. IBM Syst. J. 35(3.4), 609–617 (1996)

    Article  Google Scholar 

  2. Ashraful, Alam, Md., Riyami, Khalid Al: Shear strengthening of reinforced concrete beam using natural fibre reinforced polymer laminates. Constr. Build. Mater. 162, 683–696 (2018)

    Article  Google Scholar 

  3. Usman, M., Asghar, M.R., Ansari, I.S., Qaraqe, M.: from in-body to off-body communications. Security in wireless body area networks. IEEE Access 6, 58064–58074 (2018)

    Article  Google Scholar 

  4. Suguna, Y.S., Reddy, B.K., Durga, V.K., Roshini, A.: Secure quantum key distribution encryption method for efficient data communication in wireless body area sensor net-works. Int. J. Eng .Technol. 7, 331–335 (2018)

    Article  Google Scholar 

  5. Zhang, G.H., Poon, C.C.Y., Zhang, Y.T.: A review on body area networks security for healthcare. Int. Sch. Res. Notices (2011). https://doi.org/10.5402/2011/692592

    Article  Google Scholar 

  6. Prateek, K., Maity, S., Amin, R.: An unconditionally secured privacy-preserving authentication scheme for smart metering infrastructure in smart grid. IEEE Trans. Netw. Sci.Eng. 10(2), 1085–95 (2022)

    Article  MathSciNet  Google Scholar 

  7. Bennett,Charles H, Brassard,Gilles: Quantum cryptography: Public key distribution and coin tossing. arXiv preprint arXiv:2003.06557 (2020)

  8. Kalra, M., Poonia, R.C.: Design a new protocol and compare with bb84 protocol for quantum key distribution. In: Soft Computing for Problem Solving, pp. 969–978. Springer, Berlin (2019)

    Chapter  Google Scholar 

  9. Devi, V.A., Kalaivani, V.: Enhanced bb84 quantum cryptography protocol for secure communication in wireless body sensor networks for medical applications. Personal Ubiquitous Comput. (2021). https://doi.org/10.1007/s00779-021-01546-z

    Article  Google Scholar 

  10. Al-Janabi, S., Al-Shourbaji, I., Shojafar, M., Shamshirband, S.: Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications. Egypt. Inf. J. 18(2), 113–122 (2017)

    Google Scholar 

  11. Mehic, M., Fazio, P., Voznak, M., Chromy, E.: Toward designing a quantum key distribution network simulation model. Adv. Electrical Electron. Eng. 14(4), 413–420 (2016)

    Article  Google Scholar 

  12. Zhao, B., Zha, X., Chen, Z., Shi, R., Wang, D., Peng, T., Yan, L.: Performance analysis of quantum key distribution technology for power business. Appl. Sci. 10(8), 2906 (2020)

    Article  Google Scholar 

  13. Bi, L., Miao, M., Di, X.: A dynamic-routing algorithm based on a virtual quantum key distribution network. Appl. Sci. 13(15), 8690 (2023)

    Article  Google Scholar 

  14. Yang, Y.G., Liu, B.X., Xu, G.B., Zhou, Y.H., Shi, W.M.: Practical quantum anonymous private information retrieval based on quantum key distribution. IEEE Trans. Inf. Forensics Sec. (2023). https://doi.org/10.1109/TIFS.2023.3288989

    Article  Google Scholar 

  15. Kebapci, B., Levent, V.E., Ergin, S., Mutlu, G., Baglica, I., Tosun, A., Paglierani, P., Pelekanakis, K., Petroccia, R., Alves, J., et al.: Fpga-based implementation of an underwater quantum key distribution system with bb84 protocol. IEEE Photonics J. (2023). https://doi.org/10.1109/JPHOT.2023.3287493

    Article  Google Scholar 

  16. Mehmood, G., Khan, M.Z., Waheed, A., Zareei, M., Mohamed, E.M.: A trust-based energy-efficient and reliable communication scheme (trust-based ercs) for remote patient monitoring in wireless body area networks. IEEE Access 8, 131397–131413 (2020)

    Article  Google Scholar 

  17. Chawla, D., Mehra, P.S.: Qsmah: a novel quantum-based secure cryptosystem using mutual authentication for healthcare in the internet of things. Internet Things 24, 100949 (2023)

    Article  Google Scholar 

  18. Mehmood, G., Khan, M.Z., Bashir, A.K., Al-Otaibi, Y.D., Khan, S.: An efficient qos-based multi-path routing scheme for smart healthcare monitoring in wireless body area networks. Comput. Electrical Eng. 109, 108517 (2023)

    Article  Google Scholar 

  19. Mihara, T.: Quantum identification schemes with entanglements. Phys. Rev. A 65(5), 052326 (2002)

    Article  MathSciNet  Google Scholar 

  20. Lee, H., Lim, J., Yang, H.: Quantum direct communication with authentication. Phys. Rev. A 73(4), 042305 (2006)

    Article  Google Scholar 

  21. Yang, Y.-G., Wang, H.-Y., Jia, X., Zhang, H.: A quantum protocol for (t, n)-threshold identity authentication based on Greenberger-Horne-Zeilinger states. Int. J. Theor. Phys. 52, 524–530 (2013)

    Article  MathSciNet  Google Scholar 

  22. Al-Mohammed HA, Yaacoub E: On the use of quantum communications for securing iot devices in the 6g era. In 2021 IEEE International Conference on Communications Workshops (ICC Workshops), 1–6. IEEE (2021)

  23. Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  MathSciNet  Google Scholar 

  24. Hirvensalo, M.: Quantum computing. Springer Science & Business Media, Berlin (2003)

    Google Scholar 

  25. Vedral, V.: Quantum entanglement. Nat. Phys. 10(4), 256–258 (2014)

    Article  Google Scholar 

  26. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Modern Phys. 81(2), 865 (2009)

    Article  MathSciNet  Google Scholar 

  27. Pratap, S.: Transport properties of zigzag graphene nanoribbons in the confined region of potential well. Superlatt. Microstruct. 100, 673–682 (2016)

    Article  Google Scholar 

  28. Steane, A.: Quantum computing. Rep. Prog. Phys. 61(2), 117 (1998)

    Article  MathSciNet  Google Scholar 

  29. Bužek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54(3), 1844 (1996)

    Article  MathSciNet  Google Scholar 

  30. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)

    Article  Google Scholar 

  31. Wong, H.Y.: No-cloning theorem and quantum teleportation i. In: Introduction to Quantum Computing, pp. 173–182. Springer, Berlin (2022)

    Chapter  Google Scholar 

  32. Zettili, N.: Quantum mechanics: concepts and applications (2003)

  33. Prajapat, S., Kumar, P., Kumar, S., Das, A.K., Shetty, S., Hossain, M.S.: Designing high-performance identity-based quantum signature protocol with strong security. IEEE Access (2024). https://doi.org/10.1109/ACCESS.2024.3355196

    Article  Google Scholar 

  34. Chernega,V.N., Man’ko, O.V., Man’ko,V.I.: Entangled probability distributions. arXiv preprint arXiv:2302.13065 (2023)

  35. He, D., Zeadally, S., Kumar, N., Lee, J.-H.: Anonymous authentication for wireless body area networks with provable security. IEEE Syst. J. 11(4), 2590–2601 (2016)

    Article  Google Scholar 

  36. Prateek, K., Altaf, F., Amin, R., Maity, S.: A privacy preserving authentication protocol using quantum computing for V2I authentication in vehicular ad hoc networks. Sec. Commun. Netw. (2022). https://doi.org/10.1155/2022/4280617

    Article  Google Scholar 

  37. Shen, L., Ma, J., Liu, X., Wei, F., Miao, M.: A secure and efficient id-based aggregate signature scheme for wireless sensor networks. IEEE Internet Things J. 4(2), 546–554 (2016)

    Article  Google Scholar 

  38. Shuai, M., Xiong, L., Wang, C., Nenghai, Y.: Lightweight and privacy-preserving authentication scheme with the resilience of desynchronisation attacks for wbans. IET Inf. Sec. 14(4), 380–390 (2020)

    Article  Google Scholar 

  39. Zhang, J., Zhang, Q., Li, Z., Xianling, L., Gan, Y.: A lightweight and secure anonymous user authentication protocol for wireless body area networks. Sec. Commun. Netw. 1–11, 2021 (2021)

    Google Scholar 

  40. Ryu, H., Kim, H.: Privacy-Preserving Authentication Protocol for Wireless Body Area Networks in Healthcare Applications. Healthcare, p. 1114. MDPI, Basel (2021)

    Google Scholar 

  41. Selvarajan, S., Srivastava, G., Khadidos, A.O., Khadidos, A.O., Baza, M., Alshehri, A., Lin, J.C.: An artificial intelligence lightweight blockchain security model for security and privacy in iiot systems. J. Cloud Comput. 12(1), 38 (2023)

    Article  Google Scholar 

  42. Rabie, O.B., Selvarajan, S., Hasanin, T., Mohammed, G.B., Alshareef, A.M., Uddin, M.: A full privacy-preserving distributed batch-based certificate-less aggregate signature authentication scheme for healthcare wearable wireless medical sensor networks (hwmsns). Int. J. Inf. Sec. 23(1), 51–80 (2024)

    Article  Google Scholar 

  43. Garg, S., Kaur, K., Kaddoum, G., Rodrigues, J.J., Guizani, M.: Secure and lightweight authentication scheme for smart metering infrastructure in smart grid. IEEE Trans. Industrial Inf. 16(5), 3548–3557 (2019)

    Article  Google Scholar 

  44. Shim, K.-A.: Comments on revocable and scalable certificateless remote authentication protocol with anonymity for wireless body area networks. IEEE Trans. Inf. Forensics Sec. 15, 81–82 (2018)

    Article  Google Scholar 

Download references

Funding

No funding has been received for this paper.

Author information

Authors and Affiliations

Authors

Contributions

Sunil Prajapat: Conceptualization, software, validation, writing, visualization. Pankaj Kumar: Conceptualization, validation, reviewing and editing, investigation. Sandeep Kumar: Conceptualization, validation, reviewing and editing, data curation.

Corresponding author

Correspondence to Pankaj Kumar.

Ethics declarations

Competing interests

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajapat, S., Kumar, P. & Kumar, S. A privacy preserving quantum authentication scheme for secure data sharing in wireless body area networks. Cluster Comput 27, 9013–9029 (2024). https://doi.org/10.1007/s10586-024-04449-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-024-04449-9

Keywords