Skip to main content

Advertisement

Log in

Empowering e-learning approach by the use of federated edge computing

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Federated learning (FL) is a decentralized approach to training machine learning model. In the traditional architecture, the training requires getting the whole data what causes a threat to the privacy of the sensitive data. FL was proposed to overcome the cited limits. The principal of FL revolves around training machine learning models locally on individual devices instead of gathering all the data in a central server, and only the updated models are shared and aggregated. Concerning e-learning, it is about using electronic/digital technology to deliver educational content in order to facilitate the learning. It becomes popular with the advancement of the internet and digital devices mainly after the COVID-19. In this work, we propose an e-learning recommendation system based on FL architecture where we can propose suitable courses to the learner. Because of the important number of connected learners looking for online courses, the FL encounters a problem: bottleneck communication. This situation can cause the increase of the computational load, the longer time of the aggregation, the saturation of the resources, etc. As solution, we propose using the edge computing potentials so that the aggregation will be performed first in the edge layer then in the central server, reducing hence, the need for continuous data transmission to the server and enabling a faster inference while keeping the security and privacy of the data. The experiments carried out prove the effectiveness of our approach in solving the problem addressed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Algorithm 2
Algorithm 3
Algorithm 4
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data is provided upon request to the corresponding author.

Notes

  1. https://keras.io

  2. https://www.tensorflow.org/federated

  3. https://www.kaggle.com/datasets/joyee19/studentengagement

References

  1. Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., Zhang, J.: Edge intelligence: paving the last mile of artificial intelligence with edge computing. Proc. IEEE 107(8), 1738–1762 (2019)

    Article  Google Scholar 

  2. Park, J., Samarakoon, S., Bennis, M., Debbah, M.: Wireless network intelligence at the edge. Proc. IEEE 107(11), 2204–2239 (2019)

    Article  Google Scholar 

  3. Wang, S., Tuor, T., Salonidis, T., Leung, K.K., Makaya, C., He, T., Chan, K.: When edge meets learning: Adaptive control for resource-constrained distributed machine learning. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp. 63–71 (2018). IEEE

  4. Zhang, W., Wang, X., Zhou, P., Wu, W., Zhang, X.: Client selection for federated learning with non-iid data in mobile edge computing. IEEE Access 9, 24462–24474 (2021)

    Article  Google Scholar 

  5. Konecný, J., McMahan, H.B., Ramage, D., Richtárik, P.: Federated optimization: distributed machine learning for on-device intelligence. arXiv:1610.02527 (2016)

  6. Konecný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. arXiv:1610.05492 (2016)

  7. McMahan, H.B., Moor, E., Ramage, D., Arcas, B.A.: Federated learning of deep networks using model averaging. arXiv preprint arXiv:1602.056292, 2 (2016)

  8. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

    Article  Google Scholar 

  9. Asad, M., Moustafa, A., Ito, T.: Federated learning versus classical machine learning: a convergence comparison. arXiv preprint arXiv:2107.10976 (2021)

  10. Duan, M., Liu, D., Chen, X., Tan, Y., Ren, J., Qiao, L., Liang, L.: Astraea: Self-balancing federated learning for improving classification accuracy of mobile deep learning applications. In: 2019 IEEE 37th International Conference on Computer Design (ICCD), pp. 246–254 (2019). IEEE

  11. Samarakoon, S., Bennis, M., Saad, W., Debbah, M.: Distributed federated learning for ultra-reliable low-latency vehicular communications. IEEE Trans. Commun. 68(2), 1146–1159 (2019)

    Article  Google Scholar 

  12. Caldas, S., Wu, P., Li, T., Konečný, J., McMahan, H.B., Smith, V., Talwalkar, A.: Leaf: a benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2018)

  13. Smith, V., Chiang, C.K., Sanjabi, M., Talwalkar, A.S.: Federated multi-task learning. Adv. Neural Inform. Proc. Syst. 30 (2017)

  14. He, C., Li, S., So, J., Zeng, X., Zhang, M., Wang, H., Wang, X., Vepakomma, P., Singh, A., Qiu, H., et al.: Fedml: a research library and benchmark for federated machine learning. arXiv preprint arXiv:2007.13518 (2020)

  15. Li, H., Cai, Z., Wang, J., Tang, J., Ding, W., Lin, C.T., Shi, Y.: Fedtp: Federated learning by transformer personalization. IEEE Trans. Neural Networks Learn. Syst. (2023)

  16. Ren, M., Yu, X.: Multibranch multilevel federated learning for a better feature extraction and a plug-and-play dynamic-adjusting double flow personalization approach. Appl. Intell. 53(11), 13956–13971 (2023)

    Article  Google Scholar 

  17. Zhang, W., Lu, Q., Yu, Q., Li, Z., Liu, Y., Lo, S.K., Chen, S., Xu, X., Zhu, L.: Blockchain-based federated learning for device failure detection in industrial IoT. IEEE Int. Things J. 8(7), 5926–5937 (2020)

    Article  Google Scholar 

  18. Peyvandi, A., Majidi, B., Peyvandi, S., Patra, C.: J: Privacy-preserving federated learning for scalable and high data quality computational-intelligence-as-a-service in society 5.0. Multimedia Tools Appl. 81(18), 25029–25050 (2022)

    Article  Google Scholar 

  19. Hoppe, H., Joine, R., Milra, M., Sharple, M.: Guest editorial: wireless and mobile technologies in education. J. Comput. Assist. Learn. 19(3), 255–259 (2003)

    Article  Google Scholar 

  20. Wu, W., He, L., Lin, W., Mao, R.: Accelerating federated learning over reliability-agnostic clients in mobile edge computing systems. IEEE Trans. Parallel Distrib. Syst. 32(7), 1539–1551 (2020)

    Google Scholar 

  21. Quan, P.K., Kundroo, M., Kim, T.: Experimental evaluation and analysis of federated learning in edge computing environments. IEEE Access 11, 33628–33639 (2023)

    Article  Google Scholar 

  22. Lu, R., Zhang, W., Wang, Y., Li, Q., Zhong, X., Yang, H., Wang, D.: Auction-based cluster federated learning in mobile edge computing systems. IEEE Trans. Parallel Distrib. Syst. 34(4), 1145–1158 (2023)

    Article  Google Scholar 

  23. Lim, W.Y.B., Luong, N.C., Hoang, D.T., Jiao, Y., Liang, Y.-C., Yang, Q., Niyato, D., Miao, C.: Federated learning in mobile edge networks: a comprehensive survey. IEEE Commun. Surveys Tutor. 22(3), 2031–2063 (2020)

    Article  Google Scholar 

  24. Abreha, H.G., Hayajneh, M., Serhani, M.A.: Federated learning in edge computing: a systematic survey. Sensors 22(2), 450 (2022)

    Article  Google Scholar 

  25. Brecko, A., Kajati, E., Koziorek, J., Zolotova, I.: Federated learning for edge computing: a survey. Appl. Sci. 12(18), 9124 (2022)

    Article  Google Scholar 

  26. Duan, Q., Roshanaei, M.: Modeling and performance analysis on federated learning in edge computing. In: 2021 IEEE World Congress on Services (SERVICES), pp. 41–46 (2021). IEEE

  27. Bochie, K.: An analysis of federated learning on mobile networks. Netw. Comput. Appl. 194, 103213–103258 (2021)

    Article  Google Scholar 

  28. Tahir, M., Ali, M.I.: On the performance of federated learning algorithms for iot. IoT 3(2), 273–284 (2022)

    Article  Google Scholar 

  29. Nilsson, A., Smith, S., Ulm, G., Gustavsson, E., Jirstrand, M.: A performance evaluation of federated learning algorithms. In: Proceedings of the Second Workshop on Distributed Infrastructures for Deep Learning, pp. 1–8 (2018)

  30. Wang, Z., Xu, H., Liu, J., Huang, H., Qiao, C., Zhao, Y.: Resource-efficient federated learning with hierarchical aggregation in edge computing. In: IEEE INFOCOM 2021-IEEE Conference on Computer Communications, pp. 1–10 (2021). IEEE

  31. Firouzi, R., Rahmani, R., Kanter, T.: Federated learning for distributed reasoning on edge computing. Proc. Comput. Sci. 184, 419–427 (2021)

    Article  Google Scholar 

  32. Chen, Z., Liao, W., Hua, K., Lu, C., Yu, W.: Towards asynchronous federated learning for heterogeneous edge-powered internet of things. Digital Commun. Networks 7(3), 317–326 (2021)

    Article  Google Scholar 

  33. Zhang, J., Liu, Y., Wu, D., Lou, S., Chen, B., Yu, S.: Vpfl: a verifiable privacy-preserving federated learning scheme for edge computing systems. Digital Commun. Networks 9(4), 981–989 (2023)

    Article  Google Scholar 

  34. Xu, X., Liu, W., Zhang, Y., Zhang, X., Dou, W., Qi, L., Bhuiyan, M.Z.A.: Psdf: privacy-aware iov service deployment with federated learning in cloud-edge computing. ACM Trans. Intell. Syst. Technol. (TIST) 13(5), 1–22 (2022)

    Article  Google Scholar 

  35. Zhou, J., Wu, N., Wang, Y., Gu, S., Cao, Z., Dong, X., Choo, K.K.R.: A differentially private federated learning model against poisoning attacks in edge computing. IEEE Transactions on Dependable and Secure Computing (2022)

  36. Wang, L., Xu, Y., Xu, H., Chen, M., Huang, L.: Accelerating decentralized federated learning in heterogeneous edge computing. IEEE Transactions on Mobile Computing (2022)

  37. He, J., Guo, S., Li, M., Zhu, Y.: Acefl: Federated learning accelerating in 6g-enabled mobile edge computing networks. IEEE Transactions on Network Science and Engineering (2022)

  38. Liu, J., Xu, H., Wang, L., Xu, Y., Qian, C., Huang, J., Huang, H.: Adaptive asynchronous federated learning in resource-constrained edge computing. IEEE Transactions on Mobile Computing (2021)

  39. Liu, H., Zhang, S., Zhang, P., Zhou, X., Shao, X., Pu, G., Zhang, Y.: Blockchain and federated learning for collaborative intrusion detection in vehicular edge computing. IEEE Trans. Veh. Technol. 70(6), 6073–6084 (2021)

    Article  Google Scholar 

  40. Taïk, A., Moudoud, H., Cherkaoui, S.: Data-quality based scheduling for federated edge learning. In: 2021 IEEE 46th Conference on Local Computer Networks (LCN), pp. 17–23 (2021). IEEE

  41. Abou El Houda, Z., Moudoud, H., Brik, B., Khoukhi, L.: Securing federated learning through blockchain and explainable ai for robust intrusion detection in iot networks. In: IEEE INFOCOM 2023-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 1–6 (2023). IEEE

  42. Duan, Q., Huang, J., Hu, S., Deng, R., Lu, Z., Yu, S.: Combining federated learning and edge computing toward ubiquitous intelligence in 6g network: challenges, recent advances, and future directions. IEEE Communications Surveys & Tutorials (2023)

  43. Ayyasamy, S.: Edge computing research-a review. J. Inform. Technol. 5(1), 62–74 (2023)

    Google Scholar 

  44. Gold, J., Shaw, K.: What is edge computing and why does it matter? NetworkWorld. (2019)

  45. Shi, W., Zhang, X., Wang, Y.F., Zhang, Q.: Edge computing: state-of-the-art and future directions. J. Comput. Res. Develop. 56(1), 69–89 (2019)

    Google Scholar 

  46. Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39 (2017)

    Article  Google Scholar 

  47. Cao, K., Liu, Y., Meng, G., Sun, Q.: An overview on edge computing research. IEEE Access 8, 85714–85728 (2020)

    Article  Google Scholar 

  48. Trindade, S., Bittencourt, L.F., Da Fonseca, N.L.: Management of resource at the network edge for federated learning. arXiv preprint arXiv:2107.03428 (2021)

  49. Aledhari, M., Razzak, R., Parizi, R.M., Saeed, F.: Federated learning: a survey on enabling technologies, protocols, and applications. IEEE Access 8, 140699–140725 (2020)

    Article  Google Scholar 

  50. Gosselin, R., Vieu, L., Loukil, F., Benoit, A.: Privacy and security in federated learning: a survey. Appl. Sci. 12(19), 9901 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This research project was funded by the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding After Publication, grant No (44- PRFA-P- 85)

Funding

This research project was funded by the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding After Publication, Grant No (44- PRFA-P- 85).

Author information

Authors and Affiliations

Authors

Contributions

All authors have made equal contributions to the project, including data analysis, methodology development, and writing the paper.

Corresponding author

Correspondence to Amel Ksibi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable

Additional information

Publisher's Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arfaoui, N., Ksibi, A., Almujally, N.A. et al. Empowering e-learning approach by the use of federated edge computing. Cluster Comput 27, 13737–13748 (2024). https://doi.org/10.1007/s10586-024-04567-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-024-04567-4

Keywords