Abstract
This paper proposes a new intelligent optimization algorithm named Black Eagle Optimizer (BEO) based on the biological behaviour of the black eagle. The BEO algorithm combines the biological laws of the black eagle and mathematical transformations to guide the search behaviour of the particles. The highly adaptive BEO algorithm has strong optimisation capabilities due to its unique algorithmic structure and novel iterative approach. In the performance testing experiments of the BEO algorithm, this paper firstly conducts the parametric analysis experiments of the BEO algorithm, then analyses the complexity of the BEO algorithm, and finally conducts a comprehensive testing of the performance of the BEO algorithm on 30 CEC2017 test functions with the widest variety of functions and 12 newest CEC2022 test functions, and its performance is compared with the seven state-of-the-art optimization algorithms. The test results show that the convergence accuracy of the BEO algorithm reaches the theoretical value in 100% of unimodal functions, the convergence accuracy is higher than the comparison algorithm in 78.95% of complex functions, and the standard deviation ranks in the top three in 90.48% of functions, which demonstrates the outstanding local optimisation ability, global optimisation ability and stability of BEO algorithm. Meanwhile, the BEO algorithm also maintains a fast convergence speed. However, the complexity analysis shows that the BEO algorithm has the disadvantage of slightly higher complexity. In order to verify the optimisation ability of the BEO algorithm in real engineering problems, we used the BEO algorithm to deal with four complex engineering design problems. The experimental results show that the BEO algorithm has excellent convergence accuracy and stability when dealing with real engineering problems, but the real-time performance is slightly below average. Therefore, the BEO algorithm is optimal for handling non-real-time engineering optimisation problems. The source code of the BEO algorithm is available at https://github.com/haobinzhang123/A-metaheuristic-algorithm.
















Similar content being viewed by others
References
Gao, G., Zhang, S., Na, J., Liu, F.: Industrial robot trajectory error compensation based on calibration and joint space interpolation. J. Mech. Eng. 57(21), 55–67 (2021)
Grebner, T., Janoudi, V., Schoeder, P., Waldschmidt, C.: Self-calibration of a network of radar sensors for autonomous robots. IEEE Trans. Aerosp. Electron. Syst. (2023). https://doi.org/10.1109/TAES.2023.3277427
Yang, Z., Chen, C., Huang, G.: A hybrid global optimization algorithm for GA-nonuniform kriging-gradient projection for optimal design of robots. J. Mech. Eng. 55(11), 61–68 (2019)
Koike, R., Ariizumi, R., Matsuno, F.: Simultaneous optimization of discrete and continuous parameters defining a robot morphology and controller. IEEE Trans. Neural Netw. Learn. Syst. (2023). https://doi.org/10.1109/TNNLS.2023.3272068
Kumar, R., Dhiman, G.: A comparative study of fuzzy optimization through fuzzy number. Int. J. Mod. Res. 1(1), 1–14 (2021)
Chatterjee, I.: Artificial intelligence and patentability: review and discussions. Int. J. Mod. Res. 1(1), 15–21 (2021)
Fan, J., Guo, Y., Wu, X., Chen, X., Lin, Y.: Planetary gearbox fault diagnosis based on LSTM neural network and fault feature enhancement. J. Vib. Shock 40(20), 271–277 (2021)
Hasan, A., Tahavori, M., Midtiby, H.S.: Model-based fault diagnosis algorithms for robotic systems. IEEE Access 11, 2250–2258 (2023)
Chen, Y., Chen, L.: An inverse optimization approach to vehicle path planning problems. J. Shanghai Jiaotong Univ. (Chin. Ed.) 56(1), 81 (2022)
Dogru, S., Marques, L.: Path and trajectory planning for UV-C disinfection robots. IEEE Robot. Autom. Lett. (2023). https://doi.org/10.1109/LRA.2023.3280800
Alrashed, F.A., Alsubiheen, A.M., Alshammari, H., Mazi, S.I., Al-Saud, S.A., Alayoubi, S., Kachanathu, S.J., Albarrati, A., Aldaihan, M.M., Ahmad, T., et al.: Stress, anxiety, and depression in pre-clinical medical students: prevalence and association with sleep disorders. Sustainability 14(18), 11320 (2022)
Vaishnav, P.K., Sharma, S., Sharma, P.: Analytical review analysis for screening COVID-19 disease. Int. J. Mod. Res. 1(1), 22–29 (2021)
Gupta, V.K., Shukla, S.K., Rawat, R.S., et al.: Crime tracking system and people’s safety in India using machine learning approaches. Int. J. Mod. Res. 2(1), 1–7 (2022)
Sharma, T., Nair, R., Gomathi, S.: Breast cancer image classification using transfer learning and convolutional neural network. Int. J. Mod. Res. 2(1), 8–16 (2022)
Ahmad, F., Shahid, M., Alam, M., Ashraf, Z., Sajid, M., Kotecha, K., Dhiman, G.: Levelized multiple workflow allocation strategy under precedence constraints with task merging in IAAS cloud environment. IEEE Access 10, 92809–92827 (2022)
Singamaneni, K.K., Dhiman, G., Juneja, S., Muhammad, G., AlQahtani, S.A., Zaki, J.: A novel QKD approach to enhance IIOT privacy and computational knacks. Sensors 22(18), 6741 (2022)
Shukla, S.K., Gupta, V.K., Joshi, K., Gupta, A., Singh, M.K.: Self-aware execution environment model (SAE2) for the performance improvement of multicore systems. Int. J. Mod. Res. 2(1), 17–27 (2022)
Li, J., Shen, Y., Yang, S.: A study of variable order fractional order gradient descent method. J. Vib. Shock 40, 43–47 (2021)
Pho, K.-H.: Improvements of the Newton-Raphson method. J. Comput. Appl. Math. 408, 114106 (2022)
Bortoletti, A., Di Fiore, C., Fanelli, S., Zellini, P.: A new class of quasi-Newtonian methods for optimal learning in MLP-networks. IEEE Trans. Neural Netw. 14(2), 263–273 (2003)
Li, W., Wang, G.-G., Gandomi, A.H.: A survey of learning-based intelligent optimization algorithms. Arch. Comput. Methods Eng. 28, 3781–3799 (2021)
Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)
Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, vol. 4, pp. 1942– 1948 ( 1995). IEEE
Eglese, R.W.: Simulated annealing: a tool for operational research. Eur. J. Oper. Res. 46(3), 271–281 (1990)
Neshat, M., Sepidnam, G., Sargolzaei, M., Toosi, A.N.: Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artif. Intell. Rev. 42(4), 965–997 (2014)
Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)
Dasgupta, D.: Artificial immune systems and their applications. Springer, Berlin (2012)
Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)
Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016)
Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015)
Xue, J., Shen, B.: A novel swarm intelligence optimization approach: sparrow search algorithm. Syst. Sci. Control Eng. 8(1), 22–34 (2020)
Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris Hawks optimization: algorithm applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019)
Dehghani, M., Hubálovskỳ, Š, Trojovskỳ, P.: Northern goshawk optimization: a new swarm-based algorithm for solving optimization problems. IEEE Access 9, 162059–162080 (2021)
Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)
Dhiman, G., Kumar, V.: Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv. Eng. Softw. 114, 48–70 (2017)
Dhiman, G., Kumar, V.: Emperor penguin optimizer: a bio-inspired algorithm for engineering problems. Knowl.-Based Syst. 159, 20–50 (2018)
Kaur, S., Awasthi, L.K., Sangal, A.L., Dhiman, G.: Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 90, 103541 (2020)
Dhiman, G., Kaur, A.: STOA: a bio-inspired based optimization algorithm for industrial engineering problems. Eng. Appl. Artif. Intell. 82, 148–174 (2019)
Dhiman, G., Kumar, V.: Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowl.-Based Syst. 165, 169–196 (2019)
Dehghani, M., Montazeri, Z., Malik, O.P., Dhiman, G., Kumar, V., et al.: BOSA: binary orientation search algorithm. Int. J. Innov. Technol. Explor. Eng. 9(1), 5306–5310 (2019)
Dhiman, G., Garg, M., Nagar, A., Kumar, V., Dehghani, M.: A novel algorithm for global optimization: rat swarm optimizer. J. Ambient. Intell. Humaniz. Comput. 12, 8457–8482 (2021)
Dehghani, M., Montazeri, Z., Dehghani, A., Ramirez-Mendoza, R.A., Samet, H., Guerrero, J.M., Dhiman, G.: MLO: Multi leader optimizer. Int. J. Intell. Eng. Syst. 13(6) (2020)
Dehghani, M., Montazeri, Z., Givi, H., Guerrero, J.M., Dhiman, G.: Darts game optimizer: a new optimization technique based on darts game. Int. J. Intell. Eng. Syst. 13(5), 286–294 (2020)
Dehghani, M., Montazeri, Z., Dhiman, G., Malik, O., Morales-Menendez, R., Ramirez-Mendoza, R.A., Dehghani, A., Guerrero, J.M., Parra-Arroyo, L.: A spring search algorithm applied to engineering optimization problems. Appl. Sci. 10(18), 6173 (2020)
Dhiman, G., Oliva, D., Kaur, A., Singh, K.K., Vimal, S., Sharma, A., Cengiz, K.: BEPO: a novel binary emperor penguin optimizer for automatic feature selection. Knowl.-Based Syst. 211, 106560 (2021)
Dhiman, G.: ESA: a hybrid bio-inspired metaheuristic optimization approach for engineering problems. Eng. Comput. 37, 323–353 (2021)
Salgotra, R., Singh, U.: The naked mole-rat algorithm. Neural Comput. Appl. 31, 8837–8857 (2019)
Abdel-Basset, M., Mohamed, R., Jameel, M., Abouhawwash, M.: Spider wasp optimizer: a novel meta-heuristic optimization algorithm. Artif. Intell. Rev. 56, 1–64 (2023)
Trojovská, E., Dehghani, M., Trojovskỳ, P.: Zebra optimization algorithm: a new bio-inspired optimization algorithm for solving optimization algorithm. IEEE Access 10, 49445–49473 (2022)
Azizi, M., Aickelin, U., A. Khorshidi, H., Shishehgarkhaneh, M.B.: Energy valley optimizer: a novel metaheuristic algorithm for global and engineering optimization. Sci. Rep. 13(1), 226 ( 2023)
Abdel-Basset, M., Mohamed, R., Azeem, S.A.A., Jameel, M., Abouhawwash, M.: Kepler optimization algorithm: a new metaheuristic algorithm inspired by kepler’s laws of planetary motion. Knowl.-Based Syst. 268, 110454 (2023)
Zolf, K.: Gold rush optimizer: a new population-based metaheuristic algorithm. Oper. Res. Decis. 33(1) (2023)
Abdel-Basset, M., Mohamed, R., Sallam, K.M., Chakrabortty, R.K.: Light spectrum optimizer: a novel physics-inspired metaheuristic optimization algorithm. Mathematics 10(19), 3466 (2022)
Su, H., Zhao, D., Heidari, A.A., Liu, L., Zhang, X., Mafarja, M., Chen, H.: RIME: a physics-based optimization. Neurocomputing 532, 183–214 (2023)
Abdel-Basset, M., Mohamed, R., Jameel, M., Abouhawwash, M.: Nutcracker optimizer: a novel nature-inspired metaheuristic algorithm for global optimization and engineering design problems. Knowl.-Based Syst. 262, 110248 (2023)
Zhang, Q., Gao, H., Zhan, Z.-H., Li, J., Zhang, H.: Growth optimizer: a powerful metaheuristic algorithm for solving continuous and discrete global optimization problems. Knowl.-Based Syst. 261, 110206 (2023)
Shehadeh, H.A.: Chernobyl disaster optimizer (CDO): a novel meta-heuristic method for global optimization. Neural Comput. Appl. 35(15), 10733–10749 (2023)
Trojovskỳ, P., Dehghani, M.: Subtraction-average-based optimizer: a new swarm-inspired metaheuristic algorithm for solving optimization problems. Biomimetics 8(2), 149 (2023)
Mirrashid, M., Naderpour, H.: Incomprehensible but intelligible-in-time logics: theory and optimization algorithm. Knowl.-Based Syst. 264, 110305 (2023)
Adegboye, O.R., Feda, A.K., Ojekemi, O.S., Agyekum, E.B., Hussien, A.G., Kamel, S.: Chaotic opposition learning with mirror reflection and worst individual disturbance grey wolf optimizer for continuous global numerical optimization. Sci. Rep. 14(1), 4660 (2024)
Feda, A.K., Adegboye, M., Adegboye, O.R., Agyekum, E.B., Mbasso, W.F., Kamel, S.: S-shaped grey wolf optimizer-based fox algorithm for feature selection. Heliyon 10(2) (2024)
Adegboye, O.R., Deniz Ülker, E.: Gaussian mutation specular reflection learning with local escaping operator based artificial electric field algorithm and its engineering application. Appl. Sci. 13(7), 4157 (2023)
Zhang, H., San, H., Sun, H., Ding, L., Wu, X.: A novel optimization method: wave search algorithm. J. Supercomput. 1–36 (2024)
Akpinar, S.: Hybrid large neighbourhood search algorithm for capacitated vehicle routing problem. Expert Syst. Appl. 61, 28–38 (2016)
Wang, J., Wang, W., Hu, X., Qiu, L., Zang, H.: Black-winged kite algorithm: a nature-inspired meta-heuristic for solving benchmark functions and engineering problems. Artif. Intell. Rev. 57(4), 1–53 (2024)
Droste, S., Jansen, T., Wegener, I.: Optimization with randomized search heuristics-the (a) NFL theorem, realistic scenarios, and difficult functions. Theoret. Comput. Sci. 287(1), 131–144 (2002)
Gürses, D., Mehta, P., Sait, S.M., Yildiz, A.R.: African vultures optimization algorithm for optimization of shell and tube heat exchangers. Mater. Test. 64(8), 1234–1241 (2022)
Mohammadi-Balani, A., Nayeri, M.D., Azar, A., Taghizadeh-Yazdi, M.: Golden eagle optimizer: a nature-inspired metaheuristic algorithm. Comput. Ind. Eng. 152, 107050 (2021)
Azizi, M., Talatahari, S., Gandomi, A.H.: Fire hawk optimizer: a novel metaheuristic algorithm. Artif. Intell. Rev. 56(1), 287–363 (2023)
Alsattar, H.A., Zaidan, A., Zaidan, B.: Novel meta-heuristic bald eagle search optimisation algorithm. Artif. Intell. Rev. 53, 2237–2264 (2020)
Lei, Z., Xiao-Nong, Y., Guang, H., Qin, H., Tian-Tian, L., ZI-YUE, D., Qian, W.: A review of the distribution of black eagle ictinaetus malaiensis in mainland china. Forktail 30, 45–49 (2014)
Lin, W.-H., Hong, S.-Y., Lin, S.-M.: Home range and movement pattern of a tailless black eagle in taiwan: a special case of noninvasive study by community science. J. Raptor Res. 55(4), 644–648 (2021)
Mahdavi, S., Rahnamayan, S., Deb, K.: Opposition based learning: a literature review. Swarm Evol. Comput. 39, 1–23 (2018)
Wu, G., Mallipeddi, R., Suganthan, P.: Problem definitions and evaluation criteria for the CEC 2017 competition and special session on constrained single objective real-parameter optimization. Nanyang Technol. Univ., Singapore, Tech. Rep. 1–18 (2016)
Yazdani, D., Branke, J., Omidvar, M.N., Li, X., Li, C., Mavrovouniotis, M., Nguyen, T.T., Yang, S., Yao, X.: IEEE CEC 2022 competition on dynamic optimization problems generated by generalized moving peaks benchmark. arXiv:2106.06174 (2021)
Montazeri, Z., Niknam, T., Aghaei, J., Malik, O.P., Dehghani, M., Dhiman, G.: Golf optimization algorithm: a new game-based metaheuristic algorithm and its application to energy commitment problem considering resilience. Biomimetics 8(5), 386 (2023)
Wilcoxon, N.L., Kotz, S.F.: Individual Comparisons by Ranking Methods Breakthroughs in Statistics. Springer, New York (1992)
Coello, C.A.C.: Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 41(2), 113–127 (2000)
Acknowledgements
The authors would like to acknowledge the financial support from the Yunnan Province Basic Research Program Project 202301AU070059 and the Kunming University of Science and Technology college level personnel training project KKZ3202301041.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, H., San, H., Chen, J. et al. Black eagle optimizer: a metaheuristic optimization method for solving engineering optimization problems. Cluster Comput 27, 12361–12393 (2024). https://doi.org/10.1007/s10586-024-04586-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-024-04586-1