Skip to main content

Advertisement

Log in

A revolutionary approach to use convolutional spiking neural networks for robust intrusion detection

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In an era dominated by network connectivity, the reliance on robust and secure networks has become paramount. With the advent of 5G and the Internet of Things, networks are expanding in both scale and complexity, rendering them susceptible to a myriad of cyber threats. This escalating risk encompasses potential breaches of user privacy, unauthorized access to transmitted data, and targeted attacks on the underlying network infrastructure. To safeguard the integrity and security of modern networked societies, the deployment of Network Intrusion Detection Systems is imperative. This paper presents a novel lightweight detection model that seamlessly integrates Spiking Neural Networks and Convolutional Neural Networks with advanced algorithmic frameworks. Leveraging this hybrid approach, the proposed model achieves superior detection accuracy while maintaining efficiency in terms of power consumption and computational resources. This paper presents a new style recognition model that seamlessly integrates spiking neural networks and convolutional neural networks with advanced algorithmic frameworks. We call this combined method Spiking-HCCN. Using this hybrid approach, Spiking-HCCN achieves superior detection accuracy while maintaining efficiency in terms of power consumption and computational resources. Comparative evaluations against state-of-the-art models, including Spiking GCN and Spike-DHS, demonstrate significant performance advantages. Spiking-HCCN outperforms these benchmarks by 24% in detection accuracy, 21% in delay, and 29% in energy efficiency, underscoring its efficacy in fortifying network security in the face of evolving cyber threats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Algorithm 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used in the paper will be available upon request.

References

  1. Bul’ajoul, W., James, A., Shaikh, S.: A new architecture for network intrusion detection and prevention. IEEE Access. 7, 18558–18573 (2018)

    Article  Google Scholar 

  2. Zarzoor, A.R., Al-Jamali, N.A.S., Qader, D.A.A.: Intrusion detection method for internet of things based on the spiking neural network and decision tree method. Int. J. Electr. Comput. Eng. 13(2), 2278 (2023)

    Google Scholar 

  3. Ahmad, S., Mehfuz, S., Beg, J.: An efficient and secure key management with the extended convolutional neural network for intrusion detection in cloud storage. Concurr. Comput.: Pract. Exp. 35(23), e7806 (2023)

    Article  Google Scholar 

  4. Laghrissi, F., Douzi, S., Douzi, K., Hssina, B.: IDS-attention: an efficient algorithm for intrusion detection systems using attention mechanism. J. Big Data 8, 1–21 (2021)

    Article  Google Scholar 

  5. Lightbody, D., Ngo, D.M., Temko, A., Murphy, C., Popovici, E.: Host-based intrusion detection system for IOT using convolutional neural networks. In 2022 33rd Irish Signals and Systems Conference (ISSC) (pp. 1–7). IEEE. (2022)

  6. Fomin, I., Korsakov, A., Ivanova, V., Bakhshiev, A.: Investigation of a spike segment neuron in the offline multi-object tracking task with embeddings constructed by a convolutional network. In International Conference on Neuroinformatics (pp. 346–354). Cham: Springer Nature Switzerland (2023)

  7. Chen, Y., Mai, Y., Feng, R., Xiao, J.: An adaptive threshold mechanism for accurate and efficient deep spiking convolutional neural networks. Neurocomputing. 469, 189–197 (2022)

    Article  Google Scholar 

  8. Zhao, H., Zhao, N., Zong, G., Zhao, X., Xu, N.: Sliding-mode surface-based approximate optimal control for nonlinear multiplayer Stackelberg-Nash games via adaptive dynamic programming. Commun. Nonlinear Sci. Numer. Simul. 132, 107928 (2024)

    Article  MathSciNet  Google Scholar 

  9. Zhang, L., Hu, S., Trik, M., Liang, S., Li, D.: M2M communication performance for a noisy channel based on latency-aware source-based LTE network measurements. Alexandria Eng. J. 99, 47–63 (2024)

    Article  Google Scholar 

  10. Xu, N., Liu, X., Li, Y., Zong, G., Zhao, X.: Dynamic event-triggered control for a class of uncertain strict-feedback systems via an improved adaptive neural networks backstepping approach. IEEE Trans. Autom. Sci. Eng. (2024). https://doi.org/10.1109/TASE.2024.3374522

    Article  Google Scholar 

  11. Trik, M., Akhavan, H., Bidgoli, A.M., Molk, A.M.N.G., Vashani, H., Mozaffari, S.P.: A new adaptive selection strategy for reducing latency in networks on chip. Integration 89, 9–24 (2023)

    Article  Google Scholar 

  12. Huang, S., Niu, B., Wang, H., Xu, N., Zhao, X.: Prescribed performance-based low-complexity adaptive 2-Bit-triggered control for unknown nonlinear systems with actuator dead-zone. IEEE Trans Circuits Systems II Express Briefs. 71(2), 762–766 (2024)

    Google Scholar 

  13. Zhang, H., Zou, Q., Ju, Y., Song, C., Chen, D.: Distance-based support vector machine to predict DNA N6-methyladine modification. Curr. Bioinform. 17(5), 473–482 (2022)

    Article  Google Scholar 

  14. Cao, C., Wang, J., Kwok, D., Zhang, Z., Cui, F., Zhao, D., JunLi, M., Zou, Q.: webTWAS: A resource for disease candidate susceptibility genes identified by transcriptome-wide association study. Nucleic Acids Res. 50(D1), D1123–D1130 (2022)

    Article  Google Scholar 

  15. Sun, J., Zhang, Y., Trik, M.: PBPHS: a profile-based predictive handover strategy for 5G networks. Cybern. Syst. , 1–22 (2022)

  16. Zhen Gao, N., Zhao, X., Zhao, B., Niu: Ning, event-triggered prescribed performance adaptive secure control fornonlinear cyber physical systems under denial-of-service attacks. Commun. Nonlinear Sci. Numer. Simul. 131, 107793 (2024). https://doi.org/10.1016/j.cnsns.2023.10

    Article  Google Scholar 

  17. Wang, Z., Jin, Z., Yang, Z., Zhao, W., Trik, M.: Increasing efficiency for routing in internet of things using binary gray wolf optimization and fuzzy logic. J. King Saud Univ.-Comput. Inform. Sci. 35(9), 101732 (2023)

    Google Scholar 

  18. Shihui Liu, B., Niu, N., Xu, X., Zhao, Z.-S.: Game-based decentralized optimal control for saturated nonlinear interconnected systems via a data and event driven approach. IEEE Syst. J. (2024). https://doi.org/10.1109/JSYST.2024.3350771

    Article  Google Scholar 

  19. Wang, G., Wu, J., Trik, M.: A novel approach to reduce video traffic based on understanding user demand and D2D communication in 5G networks. IETE J. Res., 1–17. (2023)

  20. Sun, G., Liao, D., Zhao, D., Xu, Z., Yu, H.: Live migration for multiple correlated virtual machines in cloud-based data centers. IEEE Trans. Serv. Comput. 11(2), 279–291 (2018). https://doi.org/10.1109/TSC.2015.2477825

    Article  Google Scholar 

  21. Khosravi, M., Trik, M., Ansari, A.: Diagnosis and classification of disturbances in the power distribution network by phasor measurement unit based on fuzzy intelligent system. J. Eng. 2024(1), e12322 (2024)

    Google Scholar 

  22. Dai, M., Sun, G., Yu, H., Niyato, D.: Maximize the long-term average revenue of network slice provider via admission control among heterogeneous slices. IEEE/ACM Trans. Netw. 32(1), 745–760 (2024). https://doi.org/10.1109/TNET.2023.3297883

    Article  Google Scholar 

  23. Sun, G., Xu, Z., Yu, H., Chen, X., Chang, V., Vasilakos, A.V.: Low-latency and resource-efficient service function chaining Orchestration in network function virtualization. IEEE Internet Things J. 7(7), 5760–5772 (2020). https://doi.org/10.1109/JIOT.2019.2937110

    Article  Google Scholar 

  24. Xu, X., Liu, W., Yu, L.: Trajectory prediction for heterogeneous traffic-agents using knowledge correction data-driven model. Inf. Sci. 608, 375–391 (2022). https://doi.org/10.1016/j.ins.2022.06.073

    Article  Google Scholar 

  25. Chen, J., Wang, Q., Peng, W., Xu, H., Li, X., Xu, W.: Disparity-based multiscale fusion network for transportation detection. IEEE Trans. Intell. Transp. Syst. 23(10), 18855–18863 (2022). https://doi.org/10.1109/TITS.2022.3161977

    Article  Google Scholar 

  26. Li, Y., Wang, H., Trik, M.: Design and simulation of a new current mirror circuit with low power consumption and high performance and output impedance. Analog Integr. Circuits Signal Process., 1–13. (2024)

  27. Li, S., Chen, J., Peng, W., Shi, X., Bu, W.: A vehicle detection method based on disparity segmentation. Multimedia Tools Appl. 82(13), 19643–19655 (2023). https://doi.org/10.1007/s11042-023-14360-x

    Article  Google Scholar 

  28. Chen, J., Wang, Q., Cheng, H.H., Peng, W., Xu, W.: A review of vision-based traffic semantic understanding in ITSs. IEEE Trans. Intell. Transp. Syst. 23(11), 19954–19979 (2022). https://doi.org/10.1109/TITS.2022.3182410

    Article  Google Scholar 

  29. Yin, Y., Guo, Y., Su, Q., Wang, Z.: Task allocation of multiple unmanned aerial vehicles based on deep transfer reinforcement learning. Drones 6(8), 215 (2022). https://doi.org/10.3390/drones6080215

    Article  Google Scholar 

  30. Li, J., Li, J., Wang, C., Verbeek, F.J., Schultz, T., Liu, H.: MS2OD: outlier detection using minimum spanning tree and medoid selection. Mach. Learn.: Sci. Technol. 5(1), 15025 (2024). https://doi.org/10.1088/2632-2153/ad2492

    Article  Google Scholar 

  31. Khan, D., Alonazi, M., Abdelhaq, M., Al Mudawi, N., Algarni, A., Jalal, A., Liu, H.: Robust human locomotion and localization activity recognition over multisensory. Front. Physiol. (2024). https://doi.org/10.3389/fphys.2024.1344887

    Article  Google Scholar 

  32. Yang, H., Li, Z.: Dynamic graph convolutional network-based prediction of the urban grid-level taxi demand–supply imbalance using GPS trajectories. ISPRS Int. J. Geo-Information 13(2), 34 (2024). https://doi.org/10.3390/ijgi13020034

    Article  Google Scholar 

  33. Fu, C., Yuan, H., Xu, H., Zhang, H., Shen, L.: TMSO-Net: texture adaptive multi-scale observation for light field image depth estimation. J. Vis. Commun. Image Represent. 90, 103731 (2023). https://doi.org/10.1016/j.jvcir.2022.103731

    Article  Google Scholar 

  34. Ren, W., Jin, N., OuYang, L.: Phase space graph convolutional network for chaotic time series learning. IEEE Trans. Industr. Inf. (2024). https://doi.org/10.1109/TII.2024.3363089

    Article  Google Scholar 

  35. Qu, Z., Liu, X., Zheng, M.: Temporal-spatial quantum graph convolutional neural network based on Schrödinger approach for traffic congestion prediction. IEEE Trans. Intell. Transp. Syst. (2022). https://doi.org/10.1109/TITS.2022.3203791

    Article  Google Scholar 

  36. Li, K., Ji, L., Yang, S., Li, H., Liao, X.: Couple-group consensus of cooperative–competitive heterogeneous multiagent systems: a fully distributed event-triggered and pinning control method. IEEE Trans. Cybern. 52(6), 4907–4915 (2022). https://doi.org/10.1109/TCYB.2020.3024551

    Article  Google Scholar 

  37. Jiang, H., Wang, M., Zhao, P., Xiao, Z., Dustdar, S.: A utility-aware general framework with quantifiable privacy preservation for destination prediction in LBSs. IEEE/ACM Trans. Netw. 29(5), 2228–2241 (2021). https://doi.org/10.1109/TNET.2021.3084251

    Article  Google Scholar 

  38. Liu, D., Cao, Z., Jiang, H., Zhou, S., Xiao, Z., Zeng, F.: Concurrent low-power listening: a new design paradigm for duty-cycling communication. ACM Trans. Sen Netw. (2022). https://doi.org/10.1145/3517013

    Article  Google Scholar 

  39. Shen, X., Jiang, H., Liu, D., Yang, K., Deng, F., Lui, J.C.S., Luo, J.: PupilRec: Leveraging pupil morphology for recommending on smartphones. IEEE Internet Things J. 9(17), 15538–15553 (2022). https://doi.org/10.1109/JIOT.2022.3181607

    Article  Google Scholar 

  40. Hosseini, A., Rahaeifard, M., Mojahedi, M.: Analytical and numerical investigations of the ultrasonic microprobe considering size effects. Mech Adv Mater Stru. 27(24), 2043–2051 (2020)

    Article  Google Scholar 

  41. Chen, Y., Zhu, L., Hu, Z., Chen, S., Zheng, X.: Risk propagation in multilayer heterogeneous network of coupled system of large engineering project. J. Manag. Eng. 38(3), 4022003 (2022). https://doi.org/10.1061/(ASCE)ME.1943-5479.0001022

    Article  Google Scholar 

  42. Yu, J., Lu, L., Chen, Y., Zhu, Y., Kong, L.: An indirect eavesdropping attack of keystrokes on touch screen through acoustic sensing. IEEE Trans. Mob. Comput. 20(2), 337–351 (2021). https://doi.org/10.1109/TMC.2019.2947468

    Article  Google Scholar 

  43. Ding, X., Yao, R., Khezri, E.: An efficient algorithm for optimal route node sensing in smart tourism Urban traffic based on priority constraints. Wirel. Netw. 1–18 (2023)

  44. Zheng, W., Deng, P., Gui, K., Wu, X.: An abstract syntax tree based static fuzzing mutation for vulnerability evolution analysis. Inf. Softw. Technol. (2023). https://doi.org/10.1016/j.infsof.2023.107194

    Article  Google Scholar 

  45. Xiao, L., Cao, Y., Gai, Y., Khezri, E., Liu, J., Yang, M.: Recognizing sports activities from video frames using deformable convolution and adaptive multiscale features. J. cloud computing, 12(1), 167 (2023)

    Article  Google Scholar 

  46. Luo, J., Zhao, C., Chen, Q., Li, G.: Using deep belief network to construct the agricultural information system based on internet of things. J. Supercomputing. 78(1), 379–405 (2022). https://doi.org/10.1007/s11227-021-03898-y

    Article  Google Scholar 

  47. Jiang, H., Xiao, Z., Li, Z., Xu, J., Zeng, F., et al.: An energy-efficient framework for internet of things underlaying heterogeneous small cell networks. IEEE Trans. Mobile Comput. 21(1), 31–43 (2022). https://doi.org/10.1109/TMC.2020.3005908

    Article  Google Scholar 

  48. Ma, J., Hu, J.: Safe consensus control of cooperative-competitive multi-agent systems via differential privacy. Kybernetika. 58(3), 426–439 (2022). https://doi.org/10.14736/kyb-2022-3-0426

    Article  MathSciNet  Google Scholar 

  49. Kim, Y., Li, Y., Park, H., Venkatesha, Y., Panda, P.: Neural architecture search for spiking neural networks. In European Conference on Computer Vision (pp. 36–56). Cham: Springer Nature Switzerland. (2022)

  50. Guo, C., Hu, J., Hao, J., Čelikovský, S., Hu, X.: Fixed-time safe tracking control of uncertain high-order nonlinear pure-feedback systems via unified transformation functions. Kybernetika 59(3), 342–364 (2023). https://doi.org/10.14736/kyb-2023-3-0342

    Article  MathSciNet  Google Scholar 

  51. Zhao, L., Qu, S., Xu, H., Wei, Z., Zhang, C.: Energy-efficient trajectory design for secure SWIPT systems assisted by UAV-IRS. Veh. Commun. 45, 100725 (2024). https://doi.org/10.1016/j.vehcom.2023.100725

    Article  Google Scholar 

  52. Zhao, L., Xu, H., Qu, S., Wei, Z., Liu, Y.: Joint trajectory and communication design for UAV-assisted symbiotic radio networks. IEEE Trans. Veh. Technol. (2024). https://doi.org/10.1109/TVT.2024.3356587

    Article  Google Scholar 

  53. Zhang, X., Deng, H., Xiong, Z., Liu, Y., Rao, Y., Lyu, Y., Li, Y.: Secure routing strategy based on attribute-based trust access control in social-aware networks. J. Signal. Process. Syst. (2024). https://doi.org/10.1007/s11265-023-01908-1

    Article  Google Scholar 

  54. Xu, H., Han, S., Li, X., Han, Z.: Anomaly traffic detection based on communication-efficient federated learning in space-air-ground integration network. IEEE Trans. Wireless Commun. 22(12), 9346–9360 (2023). https://doi.org/10.1109/TWC.2023.3270179

    Article  Google Scholar 

  55. Liao, Q., Chai, H., Han, H., Zhang, X., Wang, X., Xia, W., et al.: An integrated multi-task model for fake news detection. IEEE Trans. Know. Data Eng. 34(11), 5154–5165 (2022). https://doi.org/10.1109/TKDE.2021.3054993

    Article  Google Scholar 

  56. Ding, Y., Zhang, W., Zhou, X., Liao, Q., Luo, Q., L. M Ni: FraudTrip: taxi fraudulent trip detection from corresponding trajectories. IEEE Internet Things J. 8(16), 12505–12517 (2021). https://doi.org/10.1109/JIOT.2020.3019398

    Article  Google Scholar 

  57. Wang, D., Zhang, W., Wu, W., Guo, X.: Soft-label for multi-domain fake news detection. IEEE Access. 11, 98596–98606 (2023). https://doi.org/10.1109/ACCESS.2023.3313602

    Article  Google Scholar 

  58. Wang, R., Zhang, Q., Zhang, Y., Shi, H., Nguyen, K.T., Zhou, X.: Unconventional split aptamers cleaved at functionally essential sites preserve biorecognition capability. Anal Chem. 91(24), 15811–15817 (2019)

  59. Lei, Y., Yanrong, C., Hai, T., Ren, G., Wenhuan, W.: DGNet: an adaptive lightweight defect detection model for new energy vehicle battery current collector. IEEE Sens. J. 23(23), 29815–29830 (2023). https://doi.org/10.1109/JSEN.2023.3324441

    Article  Google Scholar 

  60. Zhao, H., Zong, G., Zhao, X., Wang, H., Xu, N, Zhao, N.: Hierarchical sliding-mode surface-based adaptive critic tracking control for nonlinear multiplayer zero-Sum games via generalized fuzzy hyperbolic models. IEEE Trans. Fuzzy Syst. (2023). https://doi.org/10.1109/TFUZZ.2023.3273566

    Article  Google Scholar 

  61. Zhang, W., Zhu, F., Wang, S., Lu, P., Wu, X.: An accurate method to calibrate shadow moiré measurement sensitivity. Meas. Sci. Technol. 30(12), 125021 (2019). https://doi.org/10.1088/1361-6501/ab1e2d

    Article  Google Scholar 

  62. Xu, Y., Wang, E., Yang, Y., Chang, Y.: A unified collaborative representation learning for neural-network based Recommender systems. IEEE Trans. Knowl. Data Eng. 34(11), 5126–5139 (2022). https://doi.org/10.1109/TKDE.2021.3054782

    Article  Google Scholar 

  63. Liu, Y., Fang, Z., Cheung, M.H., Cai, W., Huang, J.: Mechanism design for Blockchain Storage sustainability. IEEE Commun. Mag. 61(8), 102–107 (2023). https://doi.org/10.1109/MCOM.001.2200809

    Article  Google Scholar 

  64. Fu, X., Pace, P., Aloi, G., Guerrieri, A., Li, W., et al.: Tolerance analysis of cyber-manufacturing systems to cascading failures. ACM Trans. Internet Technol. 23(4), 1–23 (2023). https://doi.org/10.1145/3579847

    Article  Google Scholar 

  65. Zhu, J., Hu, C., Khezri, E., & Ghazali, M. M. M. (2024). Edge intelligence-assisted animation design with large models: a survey. Journal of Cloud Computing, 13(1), 48.

    Article  Google Scholar 

  66. Zhou, C., Ye, L., Peng, H., Liu, Z., Wang, J., Ramírez-De-Arellano, A.: A parallel convolutional network based on spiking neural systems. Int. J. Neural Syst. 34(5), 2450022 (2024)

    Article  Google Scholar 

  67. Cao, B., Zhao, J., Gu, Y., Fan, S., Yang, P.: Security-aware industrial wireless sensor network deployment optimization. IEEE Trans. Industr. Inf. 16(8), 5309–5316 (2020). https://doi.org/10.1109/TII.2019.2961340

    Article  Google Scholar 

  68. Zhu, R.J., Zhang, M., Zhao, Q., Deng, H., Duan, Y., Deng, L.J.: Tcja-snn: Temporal-channel joint attention for spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. (2024)

  69. Hu, Y., Deng, L., Wu, Y., Yao, M., Li, G.: Advancing spiking neural networks toward deep residual learning. IEEE Trans. Neural Netw. Learn. Syst. (2024)

Download references

Funding

The authors did not receive any financial support for this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection, simulation and analysis were performed by “Yongxing Lin, Xiaoyan Xu and Hongyun Xu”.

Corresponding author

Correspondence to Hongyun Xu.

Ethics declarations

Competing interests

The authors have no competing interests, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Xu, X. & Xu, H. A revolutionary approach to use convolutional spiking neural networks for robust intrusion detection. Cluster Comput 27, 13333–13352 (2024). https://doi.org/10.1007/s10586-024-04603-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-024-04603-3

Keywords

Navigation