Skip to main content
Log in

A path planning method in three-dimensional complex space based on Bézier curves and a hybrid zebra optimization algorithm

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

For the safety and efficiency of aircraft executing tasks in complex environments, this paper presents a path planning method in three-dimensional space based on Bézier curve and a hybrid zebra optimization algorithm. Firstly, a path planning model using curves to directly generate flight paths is developed, by taking three kinds of flight costs as an objective function and control points as decision variables. To solve the established model with higher accuracy, a hybrid zebra optimization algorithm (HZOA) is constructed. It incorporates the hierarchical system of grey wolf optimization algorithm to form habitat searching strategy, which guides candidate solutions to approach better solutions by integrating information from the three pioneer zebras. Experimental results on CEC2019 test suite illustrate that the HZOA can get solutions with higher accuracy and faster convergence rate, especially in the late stage of searching. Meanwhile, its significantly superior performance to other comparison algorithms on more than half of all test functions is proved by the p values of the Kruskal–Wallis test. Finally, solving the path planning model through the HZOA, the results on three given simulated cases indicate paths obtained by HZOA have smaller total flight costs than those of other comparison algorithms for all simulated scenes. For the three sub-indicators, the approach based on HZOA ranks at least second to others, which proves it performs better in optimizing the flight distance, altitude and path smoothness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Pehlivanoglu, Y.V., Pehlivanoglu, P.: An enhanced genetic algorithm for path planning of autonomous UAV in target coverage problems. Appl. Soft Comput. 112, 107796 (2021). https://doi.org/10.1016/j.asoc.2021.107796

    Article  Google Scholar 

  2. Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, I., Bradlow, H., Pan, J., Patil, S., Goldberg, K., Abbeel, P.: Motion planning with sequential convex optimization and convex collision checking. Int. J. Robot. Res. 33(9), 1251–1270 (2014). https://doi.org/10.1177/0278364914528132

    Article  Google Scholar 

  3. Miao, C., Chen, G., Yan, C., Wu, Y.: Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm. Comput. Ind. Eng. 156, 107230 (2021). https://doi.org/10.1016/j.cie.2021.107230

    Article  Google Scholar 

  4. Tian, H., Yang, Z.H., Sun, G.M., Wang, S.P., Fu, J., Tao, G.H.: An improved A∗path-planning algorithm for nuclear spill evacuation and radioactive source retrieval in complex terrain. Nucl. Eng. Des. 408, 112314 (2023). https://doi.org/10.1016/j.nucengdes.2023.112314

    Article  Google Scholar 

  5. Liang, Y.M., Zhao, H.Y.: CCPF-RRT*: an improved path planning algorithm with consideration of congestion. Expert Syst. Appl. 228, 120403 (2023). https://doi.org/10.1016/j.eswa.2023.120403

    Article  Google Scholar 

  6. Kielas-Jensen, C., Cichella, V., Berry, T., Kaminer, I., Walton, C., Pascoal, A.: Bernstein polynomial-based method for solving optimal trajectory generation problems. Sensors 22(5), 1869 (2022)

    Article  Google Scholar 

  7. Nazarahari, M., Khanmirza, E., Doostie, S.: Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm. Expert Syst. Appl. 115, 106–120 (2019). https://doi.org/10.1016/j.eswa.2018.08.008

    Article  Google Scholar 

  8. Tharwat, A., Elhoseny, M., Hassanien, A.E., Gabel, T., Kumar, A.: Intelligent bezier curve-based path planning model using chaotic particle swarm optimization algorithm. Cluster Comput. 22(2), S4745–S4766 (2019). https://doi.org/10.1007/s10586-018-2360-3

    Article  Google Scholar 

  9. Yang, K., Moon, S., Yoo, S., Kang, J., Doh, N.L., Kim, H.B., Joo, S.: Spline-Based RRT path planner for non-holonomic. Robots J. Intell. Robot. Syst. 73(1), 763–782 (2014). https://doi.org/10.1007/s10846-013-9963-y

    Article  Google Scholar 

  10. Swedeen, J., Droge, G., Christensen, R.: Fillet-based RRT*: a rapid convergence implementation of rrt* for curvature constrained vehicles. J. Intell. Robot. Syst. 108(4), 68 (2023). https://doi.org/10.1007/s10846-023-01846-x

    Article  Google Scholar 

  11. Tordesillas, J., Lopez, B.T., Everett, M., How, J.P.: Faster: fast and safe trajectory planner for navigation in unknown environments. IEEE T. Robot. 38(2), 922–938 (2022). https://doi.org/10.1109/TRO.2021.3100142

    Article  Google Scholar 

  12. Zhang, J.X., Liu, M.Q., Zhang, S.L., Zheng, R.H.: AUV path planning based on differential evolution with environment prediction. J. Intell. Robot. Syst. 104(2), 23 (2022). https://doi.org/10.1007/s10846-021-01533-9

    Article  Google Scholar 

  13. Song, B., Wang, Z., Zou, L.: An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree Bezier curve. Appl. Soft Comput. 100, 106960 (2021). https://doi.org/10.1016/j.asoc.2020.106960

    Article  Google Scholar 

  14. Hu, G., Du, B., Wei, G.: HG-SMA: hierarchical guided slime mould algorithm for smooth path planning. Artif. Intell. Rev. 56(9), 9267–9327 (2023). https://doi.org/10.1007/s10462-023-10398-3

    Article  Google Scholar 

  15. Deepti, C., Praveen, A.: Swarm intelligence in data science: challenges, opportunities and applications. Procedia Comput. Sci. 215, 104–111 (2022). https://doi.org/10.1016/j.procs.2022.12.012

    Article  Google Scholar 

  16. Freitas, D., Lopes, L.G., Morgado-Dias, F.: Particle swarm optimisation: a historical review up to the current developments. Entropy 22(3), 362 (2020). https://doi.org/10.3390/e22030362

    Article  MathSciNet  Google Scholar 

  17. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016). https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  18. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  19. Slowik, A., Kwasnicka, H.: Evolutionary algorithms and their applications to engineering problems. Neural Comput. Appl. 32(16), 12363–12379 (2020). https://doi.org/10.1007/s00521-020-04832-8

    Article  Google Scholar 

  20. Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past, present, and future. Multimed Tools Appl. 80(5), 8091–8126 (2021). https://doi.org/10.1007/s11042-020-10139-6

    Article  Google Scholar 

  21. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  Google Scholar 

  22. Zou, Y.Y.: The whirlpool algorithm based on physical phenomenon for solving optimization problems. Eng. Comput. 36(2), 664–690 (2019). https://doi.org/10.1108/ec-05-2017-0174

    Article  Google Scholar 

  23. Nguyen, L.T., Nestorovic, T.: Unscented hybrid simulated annealing for fast inversion of tunnel seismic waves. Comput. Method Appl. M. 301, 281–299 (2016). https://doi.org/10.1016/j.cma.2015.12.004

    Article  MathSciNet  Google Scholar 

  24. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based. Syst. 96, 120–133 (2016). https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  25. Zhong, X., You, Z., Cheng, P.: A hybrid optimization algorithm and its application in flight trajectory prediction. Expert Syst. Appl. 213, 119082 (2023). https://doi.org/10.1016/j.eswa.2022.119082

    Article  Google Scholar 

  26. Song, H., Bei, J., Zhang, H., Wang, J., Zhang, P.: Hybrid algorithm of differential evolution and flower pollination for global optimization problems. Expert Syst. Appl. 237, 121402 (2024). https://doi.org/10.1016/j.eswa.2023.121402

    Article  Google Scholar 

  27. Hu, G., Du, B., Wang, X.F., Wei, G.: An enhanced black widow optimization algorithm for feature selection. Knowl.-Based Syst. 235, 107638 (2022). https://doi.org/10.1016/j.knosys.2021.107638

    Article  Google Scholar 

  28. Fu, S., Huang, H., Ma, C., Wei, J., Li, Y., Fu, Y.: Improved dwarf mongoose optimization algorithm using novel nonlinear control and exploration strategies. Expert Syst. Appl. 233, 120904 (2023). https://doi.org/10.1016/j.eswa.2023.120904

    Article  Google Scholar 

  29. Tordesillas, J., How, J.P.: MADER: trajectory planner in multiagent and dynamic environments. IEEE T. Robot. 38(1), 463–476 (2022). https://doi.org/10.1109/TRO.2021.3080235

    Article  Google Scholar 

  30. Farouki, Rida, T.: The Bernstein polynomial basis: a centennial retrospective. Comput. Aided Geom. D. 29(6), 379–419 (2012). https://doi.org/10.1016/j.cagd.2012.03.001

    Article  MathSciNet  Google Scholar 

  31. Durakl, Z., Nabiyev, V.: A new approach based on Bezier curves to solve path planning problems for mobile robots. J. Comput. Sci-Neth. 58, 101540 (2022). https://doi.org/10.1016/j.jocs.2021.101540

    Article  Google Scholar 

  32. Di, L.S., Sun, D.F., Qi, Y.H., Xiao, Z.C.: Research on shortest path planning and smoothing without obstacle collision based on moving carrier. Int. J. Aerospace Eng. 2024, 5235125 (2024). https://doi.org/10.1155/2024/5235125

    Article  Google Scholar 

  33. Huo, F.C., Zhu, S., Dong, H.L., Ren, W.J.: A new approach to smooth path planning of Ackerman mobile robot based on improved ACO algorithm and B-spline curve. Robot. Auton. Syst. 175, 104655 (2024). https://doi.org/10.1016/j.robot.2024.104655

    Article  Google Scholar 

  34. Xu, Q., Ge, J., Yang, T., Sun, X.: A trajectory design method for coupling aircraft radar cross-section characteristics. Aerosp. Sci. Technol. 98, 105653 (2020). https://doi.org/10.1016/j.ast.2019.105653

    Article  Google Scholar 

  35. Trojovská, E., Dehghani, M., Trojovský, P.: Zebra optimization algorithm: a new bio-inspired optimization algorithm for solving optimization algorithm. IEEE Access 10, 49445–49473 (2022). https://doi.org/10.1109/access.2022.3172789

    Article  Google Scholar 

  36. Zhao, S.J., Zhang, T.R., Ma, S.L., Wang, M.C.: Sea-horse optimizer: a novel nature-inspired meta-heuristic for global optimization problems. Appl. Intell. 53(10), 11833–11860 (2023). https://doi.org/10.1007/s10489-022-03994-3

    Article  Google Scholar 

  37. Dehghani, M., Trojovsky, P.: Osprey optimization algorithm: a new bio-inspired metaheuristic algorithm for solving engineering optimization problems. Front. Mech. Eng-Switz. 8, 1126450 (2023). https://doi.org/10.3389/fmech.2022.1126450

    Article  Google Scholar 

  38. Qais, M.H., Hasanien, H.M., Alghuwainem, S.: Augmented grey wolf optimizer for grid-connected PMSG-based wind energy conversion systems. Appl. Soft Comput. 69, 504–515 (2018). https://doi.org/10.1016/j.asoc.2018.05.006

    Article  Google Scholar 

  39. Naik, M.K., Panda, R., Abraham, A.: Normalized square difference based multilevel thresholding technique for multispectral images using leader slime mould algorithm. J. King Saud. Univ-Com. 34(7), 4524–4536 (2022). https://doi.org/10.1016/j.jksuci.2020.10.030

    Article  Google Scholar 

  40. Dehghani, M., Hubalovsky, S., Trojovsky, P.: Northern goshawk optimization: a new swarm-based algorithm for solving optimization problems. IEEE Access 9, 162059–162080 (2021). https://doi.org/10.1109/access.2021.3133286

    Article  Google Scholar 

  41. Li, S., Chen, H., Wang, M., Heidari, A.A., Mirjalili, S.: Slime mould algorithm: a new method for stochastic optimization. Future Gener. Comp. Sy. 111, 300–323 (2020). https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the funding received from the following science foundations: the National Natural Science Foundation of China (Nos. 62101590 and 62176214).

Author information

Authors and Affiliations

Authors

Contributions

HH, BD, and HZ wrote the main manuscript text. MW and YM completed the code and experiment of optimization algorithms. GH completed the code and experiment of path planning methods. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Bo Du.

Ethics declarations

Competing interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 42 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Du, B., Zhou, H. et al. A path planning method in three-dimensional complex space based on Bézier curves and a hybrid zebra optimization algorithm. Cluster Comput 28, 123 (2025). https://doi.org/10.1007/s10586-024-04683-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-024-04683-1

Keywords

Navigation