Skip to main content

Advertisement

Role division approach for firefly algorithm based on t-distribution perturbation and differential mutation

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Aiming at the problems of premature convergence and insufficient diversity of multi-objective firefly algorithm, this paper proposes a role division approach for firefly algorithm based on t-distribution perturbation and differential mutation. The idea of role division in nature is integrated into the firefly algorithm, and different roles are assigned to fireflies with different performances by the role division index, and the best learning mode is assigned according to the different roles, so as to realize the diversified learning of the population. The t-distribution perturbation with different degrees of freedom parameters is used instead of the original random perturbation, which can dynamically adjust the development and exploration ability of the algorithm in different periods. To avoid the algorithm falling into local optimality due to individual convergence at a later stage, differential mutation of the global optimal solution is performed to reduce the probability of the algorithm falling into stagnation and to balance convergence and diversity of the population. MOFA-PD is compared with 5 classical and 12 recent multi-objective optimization algorithms on 18 test functions, and the experimental results show that MOFA-PD has better advantages in convergence and diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Hua, Y., Liu, Q., Hao, K., Jin, Y.: A survey of evolutionary algorithms for multi-objective optimization problems with irregular Pareto fronts. IEEE/CAA J. Autom. Sin. 8, 303–322 (2021)

    Article  MathSciNet  Google Scholar 

  2. Wang, L., Pan, X., Shen, X., Zhao, P., Qiu, Q.: Balancing convergence and diversity in resource allocation strategy for decomposition-based multi-objective evolutionary algorithm. Appl. Soft Comput. 100, 106968 (2021)

    Article  Google Scholar 

  3. Hong, X., Jiang, M., Yu, J.: Fine-grained ensemble of evolutionary operators for objective space partition based multi-objective optimization. IEEE Access 9, 400–411 (2021)

    Article  Google Scholar 

  4. Liu, N., Pan, J.S., Sun, C., Chu, S.C.: An efficient surrogate-assisted quasi-affine transformation evolutionary algorithm for expensive optimization problems. Knowl. Based Syst. 209, 106418 (2020)

    Article  Google Scholar 

  5. Wang, F., Li, Y., Liao, F., Yan, H.: An ensemble learning based prediction strategy for dynamic multi-objective optimization. Appl. Soft Comput. 96, 106592 (2020)

    Article  Google Scholar 

  6. Cai, X., Geng, S., Zhang, J., Wu, D., Cui, Z., Zhang, W., Chen, J.: A sharding scheme-based many-objective optimization algorithm for enhancing security in blockchain-enabled industrial Internet of Things. IEEE Trans. Ind. Inform. 17, 7650–7658 (2021)

    Article  Google Scholar 

  7. Zhao, J., Tang, J., Shi, A., Fan, T., Xu, L.: Improved density peaks clustering based on firefly algorithm. Int. J. Bio-Inspired Comput. 15, 24–42 (2020)

    Article  Google Scholar 

  8. Cai, X., Geng, S., Wu, D., Cai, J., Chen, J.: A multicloud-model-based many-objective intelligent algorithm for efficient task scheduling in Internet of Things. IEEE Internet Things J. 8, 9645–9653 (2021)

    Article  Google Scholar 

  9. Zhang, X., Li, X.T., Yin, M.H.: An enhanced genetic algorithm for the distributed assembly permutation flowshop scheduling problem. Int. J. Bio-Inspired Comput. 15, 113–124 (2020)

    Article  Google Scholar 

  10. Lei, X., Fang, M., Fujita, H.: Moth-flame optimization-based algorithm with synthetic dynamic PPI networks for discovering protein complexes. Knowl. Based Syst. 172, 76–85 (2019)

    Article  Google Scholar 

  11. Zhang, X., Li, F., Fu, X., Tan, D., Zhao, J.: The fuzzy soft subspace clustering algorithm optimized by random learning firefly algorithm. J. Jiangxi Norm. Univ. (Nat. Sci.) 45, 137–144 (2021)

    Google Scholar 

  12. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  13. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11, 712–731 (2007)

    Article  Google Scholar 

  14. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19, 45–76 (2011)

    Article  Google Scholar 

  15. Wang, W.: Artificial Intelligence and Its Applications. Higher Education Press, Beijing (2020)

    Google Scholar 

  16. Wang, F., Zhang, H., Zhou, A.: A particle swarm optimization algorithm for mixed-variable optimization problems. Swarm Evol. Comput. 60, 100808 (2021)

    Article  Google Scholar 

  17. Wang, H., Sun, H., Li, C., Rahnamayan, S., Pan, J.S.: Diversity enhanced particle swarm optimization with neighborhood search. Inf. Sci. 223, 119–135 (2013)

    Article  MathSciNet  Google Scholar 

  18. Asghari, S., Navimipour, N.J.: Cloud service composition using an inverted ant colony optimisation algorithm. Int. J. Bio-Inspired Comput. 13, 257–268 (2019)

    Article  Google Scholar 

  19. Mohammadi, R., Javidan, R., Keshtgari, M.: An intelligent traffic engineering method for video surveillance systems over software defined networks using ant colony optimisation. Int. J. Bio-Inspired Comput. 12, 173–185 (2018)

    Article  Google Scholar 

  20. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Bristol (2008)

    Google Scholar 

  21. Yang, X.S.: Multiobjective firefly algorithm for continuous optimization. Eng. Comput. 29, 175–184 (2013)

    Article  Google Scholar 

  22. Cui, Z., Zhang, J., Wang, Y., Cao, Y., Cai, X., Zhang, W., Chen, J.: A pigeon-inspired optimization algorithm for many-objective optimization problems. Sci. China Inf. Sci. 62, 70212 (2019)

    Article  Google Scholar 

  23. Amiri, E., Dehkordi, M.N.: Dynamic data clustering by combining improved discrete artificial bee colony algorithm with fuzzy logic. Int. J. Bio-Inspired Comput. 12, 164–172 (2018)

    Article  Google Scholar 

  24. Karaboga, D.: An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report-TR06. Department of Computer Engineering, Engineering Faculty, Erciyes University (2005)

  25. Bajer, D., Zorić, B.: An effective refined artificial bee colony algorithm for numerical optimisation. Inf. Sci. 504, 221–275 (2019)

    Article  MathSciNet  Google Scholar 

  26. Zhao, J., Xie, Z., Lv, L., Wang, H., Sun, H., Yu, X.: Firefly algorithm with deep learning. Acta Electron. Sin. 46, 2633–2641 (2018)

    Google Scholar 

  27. Zhao, J., Chen, W., Xiao, R., Ye, J.: Firefly algorithm with division of roles for complex optimal scheduling. Front. Inf. Technol. Electron. Eng. 22, 1311–1333 (2021)

    Article  Google Scholar 

  28. Wang, H., Wang, W., Cui, L., Sun, H., Zhao, J., Wang, Y., Xue, Y.: A hybrid multi-objective firefly algorithm for big data optimization. Appl. Soft Comput. 69, 806–815 (2018)

    Article  Google Scholar 

  29. Zhao, J., Chen, D., Xiao, R., Cui, Z., Wang, H., Lee, I.: Multi-strategy ensemble firefly algorithm with equilibrium of convergence and diversity. Appl. Soft Comput. 123, 108938 (2022)

    Article  Google Scholar 

  30. Xie, C., Zhang, F., Lu, J., Xiao, C., Long, F.: Multi-objective firefly algorithm based on multiply cooperative strategies. Acta Electron. Sin. 47, 2359–2367 (2019)

    Google Scholar 

  31. Cheng, Z., Song, H., Zheng, D., Zhou, M., Sun, K.: Hybrid firefly algorithm with a new mechanism of gender distinguishing for global optimization. Expert Syst. Appl. 224, 120027 (2023)

    Article  Google Scholar 

  32. Wang, Z., Shen, L., Li, X., Gao, L.: An improved multi objective firefly algorithm for energy efficient hybrid flowshop rescheduling problem. J. Clean. Prod. 385, 135738 (2023)

    Article  Google Scholar 

  33. Fan, F., Cheng, X., Yan, X., Wu, Y., Luo, Z.: Multi-objective firefly algorithm combining logistic mapping and Cauchy mutation. Concurr. Comput. Pract. Exp. 36(15), e7974 (2023)

    Article  Google Scholar 

  34. Alshammari, H.H., Alzahrani, A.: Employing a hybrid lion firefly algorithm for recognition and classification of olive leaf disease in Saudi Arabia. Alex. Eng. J. 84, 215–226 (2023)

    Article  Google Scholar 

  35. Rokh, B., Mirvaziri, H., Olyaee, M.H.: A new evolutionary optimization based on multi objective firefly algorithm for mining numerical association rules. Soft. Comput. (2024). https://doi.org/10.1007/s00500-023-09558-y

    Article  Google Scholar 

  36. Li, W., He, J., Guo, G., Feng, C., Pan, L.: Prediction of Pareto dominance based on correlation analysis. Acta Electron. Sin. 45, 459–467 (2017)

    Google Scholar 

  37. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. TIK-Report, p. 103 (2001)

  38. Zhou, F., Wang, X., Zhang, M.: Evolutionary programming using mutations based on the t probability distribution. Acta Electron. Sin. 36, 667–671 (2008)

    Google Scholar 

  39. Lan, K.T., Lan, C.H.: Notes on the distinction of Gaussian and Cauchy mutations. In: 2008 8th International Conference on Intelligent Systems Design and Applications, 2008, pp. 272–277 (2008)

  40. Wang, W.L., Li, W.K., Wang, Z., Li, L.: Opposition-based multi-objective whale optimization algorithm with global grid ranking. Neurocomputing 341, 41–59 (2019)

    Article  Google Scholar 

  41. Zheng, L.M., Wang, Q., Zhang, S.X., Zheng, S.Y.: Population recombination strategies for multi-objective particle swarm optimization. Soft. Comput. 21, 4693–4705 (2017)

    Article  Google Scholar 

  42. Helwig, S., Branke, J., Mostaghim, S.: Experimental analysis of bound handling technique in particle swarm optimization. IEEE Trans. Evol. Comput. 17, 259–271 (2013)

    Article  Google Scholar 

  43. Xing, H., Wang, Z., Li, T., Li, H., Qu, R.: An improved MOEA/D algorithm for multi-objective multicast routing with network coding. Appl. Soft Comput. 59, 88–103 (2017)

    Article  Google Scholar 

  44. Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8, 256–279 (2004)

    Article  Google Scholar 

  45. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18, 577–601 (2014)

    Article  Google Scholar 

  46. Qi, Y., Ma, X., Liu, F., Jiao, L., Sun, J., Wu, J.: MOEA/D with adaptive weight adjustment. Evol. Comput. 22, 231–264 (2014)

    Article  Google Scholar 

  47. Gadhvi, B., Savsani, V., Patel, V.: Multi-objective optimization of vehicle passive suspension system using NSGA-II, SPEA2 and PESA-II. Procedia Technol. 100, 361–368 (2016)

    Article  Google Scholar 

  48. Zapotecas, S., Coello, C.A.C.: A multi-objective particle swarm optimizer based on decomposition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, 2011, pp. 69–76 (2011)

  49. Chen, B., Zeng, W., Lin, Y., Zhang, D.: A new local search-based multi-objective optimization algorithm. IEEE Trans. Evol. Comput. 19, 50–73 (2015)

    Article  Google Scholar 

  50. Li, M., Yang, S., Liu, X.: Bi-goal evolution for many-objective optimization problems. Artif. Intell. 228, 45–65 (2015)

    Article  MathSciNet  Google Scholar 

  51. Lin, Q., Liu, S., Zhu, Q., Tang, C., Song, R., Chen, J., Zhang, J.: Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems. IEEE Trans. Evol. Comput. 22, 32–46 (2016)

    Article  Google Scholar 

  52. Tian, Y., Cheng, R., Zhang, X., Su, Y., Jin, Y.: A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization. IEEE Trans. Evol. Comput. 23, 331–345 (2018)

    Article  Google Scholar 

  53. Liu, Z.Z., Wang, Y.: Handling constrained multi-objective optimization problems with constraints in both the decision and objective spaces. IEEE Trans. Evol. Comput. 23, 870–884 (2019)

    Article  Google Scholar 

  54. He, C., Cheng, R., Yazdani, D.: Adaptive offspring generation for evolutionary large-scale multi-objective optimization. IEEE Trans. Syst. Man Cybern. Syst. 52, 786–798 (2020)

    Article  Google Scholar 

  55. Tsai, C., Huang, Y., Chiang, M.: A non-dominated sorting firefly algorithm for multi-objective optimization. In: 2014 14th International Conference on Intelligent Systems Design and Applications, 2015, pp. 62–67 (2015)

  56. Wang, L., Zhan, Q., Zhou, A., Gong, M., Jiao, L.: Constrained subproblems in a decomposition-based multi-objective evolutionary algorithm. IEEE Trans. Evol. Comput. 20, 475–480 (2016)

    Article  Google Scholar 

  57. Mirjalili, S., Saremi, S., Mirjalili, S.M., Coelho, L.D.S.: Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst. Appl. 47, 106–119 (2016)

    Article  Google Scholar 

  58. Lv, L., Zhao, J., Wang, J., Fan, T.: Multi-objective firefly algorithm based on compensation factor and elite learning. Future Gener. Comput. Syst. 91, 37–47 (2019)

    Google Scholar 

  59. Zhao, J., Chen, D., Xiao, R., Fan, T.: A heterogeneous variation firefly algorithm with maximin strategy. CAAI Trans. Intell. Syst. 17, 116–130 (2022)

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 52069014 and 62466037).

Author information

Authors and Affiliations

Authors

Contributions

Juan Chen and Jia Zhao designed the study and wrote the initial draft of the manuscript. Juan Chen, Jia Zhao and Renbin Xiao designed and implemented the team formation tool and algorithms. Zhihua Cui, Hui Wang, and Jeng-Shyang Pan helped with the data collection, manuscript revision, provided detailed feedback and collaborated with the data analysis. All authors approved the final version of the manuscript for submission.

Corresponding author

Correspondence to Jia Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhao, J., Xiao, R. et al. Role division approach for firefly algorithm based on t-distribution perturbation and differential mutation. Cluster Comput 28, 94 (2025). https://doi.org/10.1007/s10586-024-04773-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-024-04773-0

Keywords